Unexpected Artifact Formation in Mass Spectrometric Analysis of Aniline under Atmospheric-Pressure Chemical Ionization.

IF 3.1 2区 化学 Q2 BIOCHEMICAL RESEARCH METHODS
Ishira Samarasinghe, Julius Pavlov, Athula B Attygalle
{"title":"Unexpected Artifact Formation in Mass Spectrometric Analysis of Aniline under Atmospheric-Pressure Chemical Ionization.","authors":"Ishira Samarasinghe, Julius Pavlov, Athula B Attygalle","doi":"10.1021/jasms.4c00286","DOIUrl":null,"url":null,"abstract":"<p><p>Atmospheric-pressure chemical ionization mass spectrometry (APCI-MS) is a widely used technique for the analysis of a diverse range of analytes. Under APCI conditions, a nonthermal plasma, rich in highly oxidative species such as H<sub>2</sub>O<sub>2</sub>, O<sub>3</sub>, atomic O, and radicals such as HO<sup>•</sup>, is created. These oxidants trigger unanticipated and often undesirable chemical reactions within the ion source. For example, when aniline was introduced into this environment, it initially underwent oxidative dimerization forming hydrazobenzene (<i>m</i>/<i>z</i> 185). However, with prolonged exposure, there was a marked increase in total ion abundance and the generation of additional artifact ions such as protonated azobenzene (<i>m</i>/<i>z</i> 183) and protonated azoxybenzene (<i>m</i>/<i>z</i> 199). The emergence of these artifacts was found to be highly dependent on the corona-current magnitude. Moreover, the desorption-gas temperature significantly influenced the rate of artifact generation. Recognizing and acknowledging the formation and presence of such artifacts in an ion source is paramount in conducting validated chemical analysis. The existence of artifacts can complicate mass spectral interpretation, potentially leading to erroneous conclusions and misinterpretations of both qualitative and quantitative data. Thus, understanding the intricacies of nonthermal plasma-driven artifact formation is critical for accurate analytical outcomes.</p>","PeriodicalId":672,"journal":{"name":"Journal of the American Society for Mass Spectrometry","volume":" ","pages":"463-472"},"PeriodicalIF":3.1000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Society for Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jasms.4c00286","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/4 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Atmospheric-pressure chemical ionization mass spectrometry (APCI-MS) is a widely used technique for the analysis of a diverse range of analytes. Under APCI conditions, a nonthermal plasma, rich in highly oxidative species such as H2O2, O3, atomic O, and radicals such as HO, is created. These oxidants trigger unanticipated and often undesirable chemical reactions within the ion source. For example, when aniline was introduced into this environment, it initially underwent oxidative dimerization forming hydrazobenzene (m/z 185). However, with prolonged exposure, there was a marked increase in total ion abundance and the generation of additional artifact ions such as protonated azobenzene (m/z 183) and protonated azoxybenzene (m/z 199). The emergence of these artifacts was found to be highly dependent on the corona-current magnitude. Moreover, the desorption-gas temperature significantly influenced the rate of artifact generation. Recognizing and acknowledging the formation and presence of such artifacts in an ion source is paramount in conducting validated chemical analysis. The existence of artifacts can complicate mass spectral interpretation, potentially leading to erroneous conclusions and misinterpretations of both qualitative and quantitative data. Thus, understanding the intricacies of nonthermal plasma-driven artifact formation is critical for accurate analytical outcomes.

常压化学电离质谱法(APCI-MS)是一种广泛用于分析各种分析物的技术。在 APCI 条件下,会产生一种非热等离子体,其中富含高度氧化物种,如 H2O2、O3、原子 O 和 HO- 等自由基。这些氧化剂会在离子源内引发意想不到的化学反应,而且往往是不受欢迎的化学反应。例如,当苯胺被引入这种环境时,最初会发生氧化二聚反应,形成肼苯(m/z 185)。然而,随着暴露时间的延长,总离子丰度明显增加,并产生了质子化偶氮苯(m/z 183)和质子化偶氮氧苯(m/z 199)等其他人工离子。研究发现,这些人工离子的出现与电晕电流的大小有很大关系。此外,解吸气体的温度对伪影的产生速度也有很大影响。要进行有效的化学分析,最重要的是识别和确认离子源中此类伪影的形成和存在。伪影的存在会使质谱解释复杂化,可能导致错误的结论以及对定性和定量数据的误读。因此,了解非热等离子体驱动的伪影形成的复杂性对于获得准确的分析结果至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.50
自引率
9.40%
发文量
257
审稿时长
1 months
期刊介绍: The Journal of the American Society for Mass Spectrometry presents research papers covering all aspects of mass spectrometry, incorporating coverage of fields of scientific inquiry in which mass spectrometry can play a role. Comprehensive in scope, the journal publishes papers on both fundamentals and applications of mass spectrometry. Fundamental subjects include instrumentation principles, design, and demonstration, structures and chemical properties of gas-phase ions, studies of thermodynamic properties, ion spectroscopy, chemical kinetics, mechanisms of ionization, theories of ion fragmentation, cluster ions, and potential energy surfaces. In addition to full papers, the journal offers Communications, Application Notes, and Accounts and Perspectives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信