Clonal dynamics of chronic myelomonocytic leukemia progression: paired-sample comparison.

IF 5.6 2区 医学 Q1 ONCOLOGY
Hsiao-Wen Kao, Ming-Chung Kuo, Che-Wei Ou, Ting-Yu Huang, Hung Chang, Tung-Liang Lin, Yu-Shin Hung, Jin-Hou Wu, Lee-Yung Shih
{"title":"Clonal dynamics of chronic myelomonocytic leukemia progression: paired-sample comparison.","authors":"Hsiao-Wen Kao, Ming-Chung Kuo, Che-Wei Ou, Ting-Yu Huang, Hung Chang, Tung-Liang Lin, Yu-Shin Hung, Jin-Hou Wu, Lee-Yung Shih","doi":"10.1002/path.6396","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigated the clonal evolution of chronic myelomonocytic leukemia (CMML) progression to secondary acute myeloid leukemia (sAML) by next-generation sequencing and pyrosequencing for variant allele frequency (VAF) of gene mutations and SNP microarray for copy neutral loss of heterozygosity (CN-LOH) in 38 paired samples from CMML/sAML patients of Taiwanese origin. The median interval between CMML and sAML samples collection was 14.9 months (1.0-89.6). RUNX1 (57%), TET2 (46%), SRSF2 (37%), and ASXL1 (28%) mutations were frequent at CMML diagnosis. Baseline VAF in epigenetic regulator genes was high (>35%) in 83% of mutational events at the CMML phase, remained stable in 78% (VAF changes <10%), and increased in 20% (increased VAF > 10%) during progression to sAML. Transcription factor genes showed high VAF (>35%) in 51% at the CMML phase, and stable VAF in 60% during progression. VAF of spliceosome genes was high (>35%) in 70% at CMML phase, and stable in 61% during progression. Activated signaling genes exhibited acquisition or loss during progression. TET2 mutations were often founding clones, and SRSF2, ASXL1, DNMT3A, EZH2, or spliceosome genes also acted as ancestral mutations. RUNX1 mutations were typically later events and occasionally ancestral hits or germline mutations. Acquisition of cytogenetic changes, signaling pathways genes (PTPN11, FLT3, NRAS, CBL), or AML-defined genes (NPM1, CEBPA, CBFB::MYH11) by linear or branching evolution occurred during sAML progression. CN-LOH was noted in EZH2, CBL, TET2, and DNMT3A genes. CEBPA mutation and concurrent biallelic TET2 with NRAS mutations at CMML diagnosis were risk factors for time to AML progression and overall survival. A characteristic ASXL1<sup>MT</sup>/RUNX1<sup>MT</sup>/Spliceosome<sup>MT</sup>/signaling<sup>WT</sup> genetic profile was associated with monocyte counts of 0.5-1.0 × 10<sup>9</sup>/l. This study highlights the complexity and heterogeneity of dynamic changes in clonal architecture during CMML progression, emphasizing its importance in pathogenesis, phenotype, risk stratification, and therapeutic strategy. © 2025 The Pathological Society of Great Britain and Ireland.</p>","PeriodicalId":232,"journal":{"name":"The Journal of Pathology","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Pathology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/path.6396","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigated the clonal evolution of chronic myelomonocytic leukemia (CMML) progression to secondary acute myeloid leukemia (sAML) by next-generation sequencing and pyrosequencing for variant allele frequency (VAF) of gene mutations and SNP microarray for copy neutral loss of heterozygosity (CN-LOH) in 38 paired samples from CMML/sAML patients of Taiwanese origin. The median interval between CMML and sAML samples collection was 14.9 months (1.0-89.6). RUNX1 (57%), TET2 (46%), SRSF2 (37%), and ASXL1 (28%) mutations were frequent at CMML diagnosis. Baseline VAF in epigenetic regulator genes was high (>35%) in 83% of mutational events at the CMML phase, remained stable in 78% (VAF changes <10%), and increased in 20% (increased VAF > 10%) during progression to sAML. Transcription factor genes showed high VAF (>35%) in 51% at the CMML phase, and stable VAF in 60% during progression. VAF of spliceosome genes was high (>35%) in 70% at CMML phase, and stable in 61% during progression. Activated signaling genes exhibited acquisition or loss during progression. TET2 mutations were often founding clones, and SRSF2, ASXL1, DNMT3A, EZH2, or spliceosome genes also acted as ancestral mutations. RUNX1 mutations were typically later events and occasionally ancestral hits or germline mutations. Acquisition of cytogenetic changes, signaling pathways genes (PTPN11, FLT3, NRAS, CBL), or AML-defined genes (NPM1, CEBPA, CBFB::MYH11) by linear or branching evolution occurred during sAML progression. CN-LOH was noted in EZH2, CBL, TET2, and DNMT3A genes. CEBPA mutation and concurrent biallelic TET2 with NRAS mutations at CMML diagnosis were risk factors for time to AML progression and overall survival. A characteristic ASXL1MT/RUNX1MT/SpliceosomeMT/signalingWT genetic profile was associated with monocyte counts of 0.5-1.0 × 109/l. This study highlights the complexity and heterogeneity of dynamic changes in clonal architecture during CMML progression, emphasizing its importance in pathogenesis, phenotype, risk stratification, and therapeutic strategy. © 2025 The Pathological Society of Great Britain and Ireland.

求助全文
约1分钟内获得全文 求助全文
来源期刊
The Journal of Pathology
The Journal of Pathology 医学-病理学
CiteScore
14.10
自引率
1.40%
发文量
144
审稿时长
3-8 weeks
期刊介绍: The Journal of Pathology aims to serve as a translational bridge between basic biomedical science and clinical medicine with particular emphasis on, but not restricted to, tissue based studies. The main interests of the Journal lie in publishing studies that further our understanding the pathophysiological and pathogenetic mechanisms of human disease. The Journal of Pathology welcomes investigative studies on human tissues, in vitro and in vivo experimental studies, and investigations based on animal models with a clear relevance to human disease, including transgenic systems. As well as original research papers, the Journal seeks to provide rapid publication in a variety of other formats, including editorials, review articles, commentaries and perspectives and other features, both contributed and solicited.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信