Impact of Fluctuations in the Peridinin-Chlorophyll a-Protein on the Energy Transfer: Insights from Classical and QM/MM Molecular Dynamics Simulations.

IF 2.9 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Biochemistry Biochemistry Pub Date : 2025-02-18 Epub Date: 2025-02-04 DOI:10.1021/acs.biochem.4c00568
Monja Sokolov, Qiang Cui
{"title":"Impact of Fluctuations in the Peridinin-Chlorophyll a-Protein on the Energy Transfer: Insights from Classical and QM/MM Molecular Dynamics Simulations.","authors":"Monja Sokolov, Qiang Cui","doi":"10.1021/acs.biochem.4c00568","DOIUrl":null,"url":null,"abstract":"<p><p>The peridinin-chlorophyll a-protein is a light-harvesting complex found in dinoflagellates, which has an unusually high fraction of carotenoids. The carotenoids are directly involved in the energy transfer to chlorophyll with high efficiency. The detailed mechanism of energy transfer and the roles of the protein in the process remain debated in the literature, in part because most calculations have focused on a limited number of chromophore structures. Here we investigate the magnitude of the fluctuations of the site energies of individual and coupled chromophores, as the results are essential to the understanding of experimental spectra and the energy transfer mechanism. To this end, we sampled conformations of the PCP complex by means of classical and quantum mechanical/molecular mechanical (QM/MM) molecular dynamics simulations. Subsequently we performed (supermolecular) excitation energy calculations on a statistically significant number of snapshots using TD-LC-DFT/CAM-B3LYP and the semiempirical time-dependent long-range corrected density functional tight binding (TD-LC-DFTB2) as the QM method. We observed that the magnitude of the site energy fluctuations is large compared to the differences of the site energies between the chromophores, and this also holds for the coupled chromophores. We also investigated the composition of the coupled states, the effect of coupling on the absorption spectra, as well as transition dipole moment orientations and the possibility of delocalized states with Chl a. Our study thus complements previous computational studies relying on a single structure and establishes the most prominent features of the coupled chromophores that are essential to the robustness of the energy transfer process.</p>","PeriodicalId":28,"journal":{"name":"Biochemistry Biochemistry","volume":" ","pages":"879-894"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry Biochemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.biochem.4c00568","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/4 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The peridinin-chlorophyll a-protein is a light-harvesting complex found in dinoflagellates, which has an unusually high fraction of carotenoids. The carotenoids are directly involved in the energy transfer to chlorophyll with high efficiency. The detailed mechanism of energy transfer and the roles of the protein in the process remain debated in the literature, in part because most calculations have focused on a limited number of chromophore structures. Here we investigate the magnitude of the fluctuations of the site energies of individual and coupled chromophores, as the results are essential to the understanding of experimental spectra and the energy transfer mechanism. To this end, we sampled conformations of the PCP complex by means of classical and quantum mechanical/molecular mechanical (QM/MM) molecular dynamics simulations. Subsequently we performed (supermolecular) excitation energy calculations on a statistically significant number of snapshots using TD-LC-DFT/CAM-B3LYP and the semiempirical time-dependent long-range corrected density functional tight binding (TD-LC-DFTB2) as the QM method. We observed that the magnitude of the site energy fluctuations is large compared to the differences of the site energies between the chromophores, and this also holds for the coupled chromophores. We also investigated the composition of the coupled states, the effect of coupling on the absorption spectra, as well as transition dipole moment orientations and the possibility of delocalized states with Chl a. Our study thus complements previous computational studies relying on a single structure and establishes the most prominent features of the coupled chromophores that are essential to the robustness of the energy transfer process.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biochemistry Biochemistry
Biochemistry Biochemistry 生物-生化与分子生物学
CiteScore
5.50
自引率
3.40%
发文量
336
审稿时长
1-2 weeks
期刊介绍: Biochemistry provides an international forum for publishing exceptional, rigorous, high-impact research across all of biological chemistry. This broad scope includes studies on the chemical, physical, mechanistic, and/or structural basis of biological or cell function, and encompasses the fields of chemical biology, synthetic biology, disease biology, cell biology, nucleic acid biology, neuroscience, structural biology, and biophysics. In addition to traditional Research Articles, Biochemistry also publishes Communications, Viewpoints, and Perspectives, as well as From the Bench articles that report new methods of particular interest to the biological chemistry community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信