Everything you wanted to know about ChatGPT: Components, capabilities, applications, and opportunities

IF 0.9 Q4 TELECOMMUNICATIONS
Arash Heidari, Nima Jafari Navimipour, Sherali Zeadally, Vinay Chamola
{"title":"Everything you wanted to know about ChatGPT: Components, capabilities, applications, and opportunities","authors":"Arash Heidari,&nbsp;Nima Jafari Navimipour,&nbsp;Sherali Zeadally,&nbsp;Vinay Chamola","doi":"10.1002/itl2.530","DOIUrl":null,"url":null,"abstract":"<p>Conversational Artificial Intelligence (AI) and Natural Language Processing have advanced significantly with the creation of a Generative Pre-trained Transformer (ChatGPT) by OpenAI. ChatGPT uses deep learning techniques like transformer architecture and self-attention mechanisms to replicate human speech and provide coherent and appropriate replies to the situation. The model mainly depends on the patterns discovered in the training data, which might result in incorrect or illogical conclusions. In the context of open-domain chats, we investigate the components, capabilities constraints, and potential applications of ChatGPT along with future opportunities. We begin by describing the components of ChatGPT followed by a definition of chatbots. We present a new taxonomy to classify them. Our taxonomy includes rule-based chatbots, retrieval-based chatbots, generative chatbots, and hybrid chatbots. Next, we describe the capabilities and constraints of ChatGPT. Finally, we present potential applications of ChatGPT and future research opportunities. The results showed that ChatGPT, a transformer-based chatbot model, utilizes encoders to produce coherent responses.</p>","PeriodicalId":100725,"journal":{"name":"Internet Technology Letters","volume":"7 6","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet Technology Letters","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/itl2.530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Conversational Artificial Intelligence (AI) and Natural Language Processing have advanced significantly with the creation of a Generative Pre-trained Transformer (ChatGPT) by OpenAI. ChatGPT uses deep learning techniques like transformer architecture and self-attention mechanisms to replicate human speech and provide coherent and appropriate replies to the situation. The model mainly depends on the patterns discovered in the training data, which might result in incorrect or illogical conclusions. In the context of open-domain chats, we investigate the components, capabilities constraints, and potential applications of ChatGPT along with future opportunities. We begin by describing the components of ChatGPT followed by a definition of chatbots. We present a new taxonomy to classify them. Our taxonomy includes rule-based chatbots, retrieval-based chatbots, generative chatbots, and hybrid chatbots. Next, we describe the capabilities and constraints of ChatGPT. Finally, we present potential applications of ChatGPT and future research opportunities. The results showed that ChatGPT, a transformer-based chatbot model, utilizes encoders to produce coherent responses.

您想知道的关于ChatGPT的一切:组件、功能、应用程序和机会
对话式人工智能(AI)和自然语言处理在OpenAI创建生成式预训练转换器(ChatGPT)后取得了重大进展。ChatGPT使用变压器架构和自关注机制等深度学习技术来复制人类语音,并针对情况提供连贯和适当的回复。该模型主要依赖于在训练数据中发现的模式,这可能导致不正确或不合逻辑的结论。在开放域聊天的上下文中,我们研究了ChatGPT的组件、功能约束和潜在应用以及未来的机会。我们首先描述ChatGPT的组件,然后是聊天机器人的定义。我们提出了一种新的分类法对它们进行分类。我们的分类包括基于规则的聊天机器人、基于检索的聊天机器人、生成式聊天机器人和混合聊天机器人。接下来,我们描述ChatGPT的功能和约束。最后,我们提出了ChatGPT的潜在应用和未来的研究机会。结果表明,ChatGPT是一种基于变压器的聊天机器人模型,利用编码器产生连贯的响应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信