New results on maximal \(L^p\)-regularity of a class of integrodifferential equations

IF 0.5 4区 数学 Q3 MATHEMATICS
H. Bounit, S. Hadd, Y. Manar
{"title":"New results on maximal \\(L^p\\)-regularity of a class of integrodifferential equations","authors":"H. Bounit,&nbsp;S. Hadd,&nbsp;Y. Manar","doi":"10.1007/s00013-024-02100-y","DOIUrl":null,"url":null,"abstract":"<div><p>The aim of this study is twofold. Initially, by employing a perturbation semigroup approach and admissible observation operators, a novel variation of constants formula is presented for the mild solutions of a specific set of integrodifferential equations in Banach spaces. Subsequently, utilizing this formula, an examination of the maximal <span>\\(L^p\\)</span>-regularity for such equations is conducted through the application of the sum operator method established by Da Prato and Grisvard. Importantly, it is demonstrated that the maximal <span>\\(L^p\\)</span>-regularity of an integrodifferential equation is equivalent to that of the same equation when the integral term is omitted. Furthermore, a finding concerning the strong solution of an initial value integrodifferential equation is provided when the initial condition pertains to the trace space.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":"124 3","pages":"325 - 341"},"PeriodicalIF":0.5000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-024-02100-y","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this study is twofold. Initially, by employing a perturbation semigroup approach and admissible observation operators, a novel variation of constants formula is presented for the mild solutions of a specific set of integrodifferential equations in Banach spaces. Subsequently, utilizing this formula, an examination of the maximal \(L^p\)-regularity for such equations is conducted through the application of the sum operator method established by Da Prato and Grisvard. Importantly, it is demonstrated that the maximal \(L^p\)-regularity of an integrodifferential equation is equivalent to that of the same equation when the integral term is omitted. Furthermore, a finding concerning the strong solution of an initial value integrodifferential equation is provided when the initial condition pertains to the trace space.

一类积分微分方程的极大\(L^p\) -正则性的新结果
这项研究的目的是双重的。首先,利用摄动半群方法和可容许观测算子,给出了Banach空间中一类特定积分微分方程温和解的一个新的常数变分公式。随后,利用该公式,通过应用由Da Prato和Grisvard建立的和算子方法,对这类方程的极大\(L^p\) -正则性进行了检验。重要的是,证明了当省略积分项时,积分微分方程的极大\(L^p\) -正则性与同一方程的极大正则性是等价的。进一步给出了初值积分微分方程初值条件在迹空间上的强解的一个发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Archiv der Mathematik
Archiv der Mathematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
117
审稿时长
4-8 weeks
期刊介绍: Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信