{"title":"Existence and Uniqueness Results for Generalized Non-local Hallaire-Luikov Moisture Transfer Equation","authors":"Asim Ilyas, Salman A. Malik, Kamran Suhaib","doi":"10.1007/s10440-025-00712-2","DOIUrl":null,"url":null,"abstract":"<div><p>This article focuses on inverse problem for Hallaire-Luikov moisture transfer equation involving Hilfer fractional derivative in time. Hallaire-Luikov equation is used to study heat and mass transfer in capillary-porous bodies. Spectral expansion method is used to find the solution of the inverse problem. By imposing certain conditions on the functions involved and utilizing certain properties of multinomial Mittag-Leffler function, it is shown that the solution to the equation, known as the inverse problem, is regular and unique. Moreover, the inverse problem exhibits ill-posedness in the sense of Hadamard. The article ends with an example to demonstrate these theoretical findings.</p></div>","PeriodicalId":53132,"journal":{"name":"Acta Applicandae Mathematicae","volume":"195 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10440-025-00712-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Applicandae Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10440-025-00712-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This article focuses on inverse problem for Hallaire-Luikov moisture transfer equation involving Hilfer fractional derivative in time. Hallaire-Luikov equation is used to study heat and mass transfer in capillary-porous bodies. Spectral expansion method is used to find the solution of the inverse problem. By imposing certain conditions on the functions involved and utilizing certain properties of multinomial Mittag-Leffler function, it is shown that the solution to the equation, known as the inverse problem, is regular and unique. Moreover, the inverse problem exhibits ill-posedness in the sense of Hadamard. The article ends with an example to demonstrate these theoretical findings.
期刊介绍:
Acta Applicandae Mathematicae is devoted to the art and techniques of applying mathematics and the development of new, applicable mathematical methods.
Covering a large spectrum from modeling to qualitative analysis and computational methods, Acta Applicandae Mathematicae contains papers on different aspects of the relationship between theory and applications, ranging from descriptive papers on actual applications meeting contemporary mathematical standards to proofs of new and deep theorems in applied mathematics.