Restoration-Aware Sleep Scheduling Framework in Energy Harvesting Internet of Things: A Deep Reinforcement Learning Approach

IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Haneul Ko;Hongrok Choi;Sangheon Pack
{"title":"Restoration-Aware Sleep Scheduling Framework in Energy Harvesting Internet of Things: A Deep Reinforcement Learning Approach","authors":"Haneul Ko;Hongrok Choi;Sangheon Pack","doi":"10.1109/TSUSC.2024.3442918","DOIUrl":null,"url":null,"abstract":"Energy harvesting Internet of Things (IoT) devices are capable of sensing only intermittent and coarse-grained data due to sleep scheduling; therefore, we develop a restoration mechanism (e.g., probabilistic matrix factorization (PMF)) that exploits spatial and temporal correlations of data to build up an environmental monitoring system. However, even with a well-designed restoration mechanism, a high accuracy of the environmental map cannot be achieved if an appropriate sleep scheduling of IoT devices is not incorporated (e.g., if IoT devices at necessary locations are in sleep mode or are not involved in restoration due to their insufficient energy). In this paper, we propose a restoration-aware sleep scheduling (RASS) framework for energy harvesting IoT-based environmental monitoring systems. Here, RASS involves customized deep reinforcement learning (DRL) considering the restoration mechanism, using which the controller performs sleep scheduling to achieve high accuracy of the restored environmental map while avoiding energy outage of IoT devices. The evaluation results demonstrate that RASS can achieve an environmental map with 5% or a lower difference from the actual values and fair energy consumption among IoT devices.","PeriodicalId":13268,"journal":{"name":"IEEE Transactions on Sustainable Computing","volume":"10 1","pages":"190-198"},"PeriodicalIF":3.0000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10636070/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Energy harvesting Internet of Things (IoT) devices are capable of sensing only intermittent and coarse-grained data due to sleep scheduling; therefore, we develop a restoration mechanism (e.g., probabilistic matrix factorization (PMF)) that exploits spatial and temporal correlations of data to build up an environmental monitoring system. However, even with a well-designed restoration mechanism, a high accuracy of the environmental map cannot be achieved if an appropriate sleep scheduling of IoT devices is not incorporated (e.g., if IoT devices at necessary locations are in sleep mode or are not involved in restoration due to their insufficient energy). In this paper, we propose a restoration-aware sleep scheduling (RASS) framework for energy harvesting IoT-based environmental monitoring systems. Here, RASS involves customized deep reinforcement learning (DRL) considering the restoration mechanism, using which the controller performs sleep scheduling to achieve high accuracy of the restored environmental map while avoiding energy outage of IoT devices. The evaluation results demonstrate that RASS can achieve an environmental map with 5% or a lower difference from the actual values and fair energy consumption among IoT devices.
能量收集物联网中的恢复感知睡眠调度框架:深度强化学习方法
由于睡眠调度,能量收集物联网(IoT)设备只能感知间歇性和粗粒度数据;因此,我们开发了一种恢复机制(例如,概率矩阵分解(PMF)),利用数据的空间和时间相关性来建立环境监测系统。然而,即使有一个设计良好的恢复机制,如果没有适当的物联网设备睡眠调度(例如,如果必要位置的物联网设备处于睡眠模式或由于能量不足而不参与恢复),也无法实现环境地图的高精度。在本文中,我们提出了一个恢复感知睡眠调度(RASS)框架,用于基于物联网的能量收集环境监测系统。在这里,RASS涉及考虑恢复机制的定制深度强化学习(DRL),控制器使用该机制执行睡眠调度,以实现恢复的环境地图的高精度,同时避免物联网设备的能量中断。评估结果表明,RASS可以实现物联网设备之间与实际值相差5%或更低的环境图和公平的能耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Sustainable Computing
IEEE Transactions on Sustainable Computing Mathematics-Control and Optimization
CiteScore
7.70
自引率
2.60%
发文量
54
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信