Edge-Enhanced Heterogeneous Graph Transformer With Priority-Based Feature Aggregation for Multi-Agent Trajectory Prediction

IF 7.9 1区 工程技术 Q1 ENGINEERING, CIVIL
Xiangzheng Zhou;Xiaobo Chen;Jian Yang
{"title":"Edge-Enhanced Heterogeneous Graph Transformer With Priority-Based Feature Aggregation for Multi-Agent Trajectory Prediction","authors":"Xiangzheng Zhou;Xiaobo Chen;Jian Yang","doi":"10.1109/TITS.2024.3509954","DOIUrl":null,"url":null,"abstract":"Trajectory prediction, which aims to predict the future positions of all agents in a crowd scene, given their past trajectories, plays a vital role in improving the safety of autonomous driving vehicles. For heterogeneous agents, it is imperative to account for the gap in feature distribution differences between agents in different categories. Besides, exploring the reference relationship between the future motions of agents is crucial yet overlooked in previous trajectory prediction methods. To tackle these challenges, we propose an edge-enhanced heterogeneous graph Transformer with priority-based feature aggregation for multi-modal trajectory prediction. Specifically, a new edge-enhanced heterogeneous interaction module that carries relative position information via edges is proposed to explore the complex interaction among agents. Additionally, we propose the concept of priority during the decoding phase and the corresponding measuring method, based on which a priority-based feature aggregation module is presented to enable referencing between agents, allowing for a more reasonable trajectory generation process. Additionally, we design an effective feature fusion method based on state refinement LSTM so that temporal and social features can be well integrated while accounting for their roles in trajectory prediction. Extensive experimental results on public datasets demonstrate that our approach outperforms the state-of-the-art baseline methods, confirming the effectiveness of our proposed method. The source code of our EPHGT model will be publicly released at <uri>https://github.com/xbchen82/EPHGT</uri>.","PeriodicalId":13416,"journal":{"name":"IEEE Transactions on Intelligent Transportation Systems","volume":"26 2","pages":"2266-2281"},"PeriodicalIF":7.9000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Intelligent Transportation Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10807107/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

Trajectory prediction, which aims to predict the future positions of all agents in a crowd scene, given their past trajectories, plays a vital role in improving the safety of autonomous driving vehicles. For heterogeneous agents, it is imperative to account for the gap in feature distribution differences between agents in different categories. Besides, exploring the reference relationship between the future motions of agents is crucial yet overlooked in previous trajectory prediction methods. To tackle these challenges, we propose an edge-enhanced heterogeneous graph Transformer with priority-based feature aggregation for multi-modal trajectory prediction. Specifically, a new edge-enhanced heterogeneous interaction module that carries relative position information via edges is proposed to explore the complex interaction among agents. Additionally, we propose the concept of priority during the decoding phase and the corresponding measuring method, based on which a priority-based feature aggregation module is presented to enable referencing between agents, allowing for a more reasonable trajectory generation process. Additionally, we design an effective feature fusion method based on state refinement LSTM so that temporal and social features can be well integrated while accounting for their roles in trajectory prediction. Extensive experimental results on public datasets demonstrate that our approach outperforms the state-of-the-art baseline methods, confirming the effectiveness of our proposed method. The source code of our EPHGT model will be publicly released at https://github.com/xbchen82/EPHGT.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Intelligent Transportation Systems
IEEE Transactions on Intelligent Transportation Systems 工程技术-工程:电子与电气
CiteScore
14.80
自引率
12.90%
发文量
1872
审稿时长
7.5 months
期刊介绍: The theoretical, experimental and operational aspects of electrical and electronics engineering and information technologies as applied to Intelligent Transportation Systems (ITS). Intelligent Transportation Systems are defined as those systems utilizing synergistic technologies and systems engineering concepts to develop and improve transportation systems of all kinds. The scope of this interdisciplinary activity includes the promotion, consolidation and coordination of ITS technical activities among IEEE entities, and providing a focus for cooperative activities, both internally and externally.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信