MetroLoc: Metro Vehicle Mapping and Localization With LiDAR-Camera-Inertial Integration

IF 7.9 1区 工程技术 Q1 ENGINEERING, CIVIL
Yusheng Wang;Weiwei Song;Yapeng Wang;Xinye Dai;Yidong Lou
{"title":"MetroLoc: Metro Vehicle Mapping and Localization With LiDAR-Camera-Inertial Integration","authors":"Yusheng Wang;Weiwei Song;Yapeng Wang;Xinye Dai;Yidong Lou","doi":"10.1109/TITS.2024.3512000","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an accurate and robust multi-modal sensor fusion framework, MetroLoc, towards one of the most extreme scenarios, the large-scale metro environments. MetroLoc is built atop an IMU-centric state estimator that tightly couples light detection and ranging (LiDAR), visual, and inertial information with the convenience of loosely coupled methods. The proposed framework is composed of three submodules: IMU odometry, LiDAR-inertial odometry (LIO), and Visual-inertial odometry (VIO). The IMU is treated as the primary sensor, which achieves the observations from LIO and VIO to constrain the accelerometer and gyroscope biases. Compared to previous point-only LIO methods, our approach leverages more geometry information by introducing both line and plane features into motion estimation. The VIO also utilizes the environmental structure information by employing both lines and points. Our proposed method has been tested in the long-during metro environments with a maintenance vehicle. Experimental results show the system more accurate and robust than the state-of-the-art approaches with real-time performance. The proposed method can reach 0.278% maximum drift in translation even in the highly degenerated tunnels. Besides, we develop a series of Virtual Reality (VR) applications towards efficient, economical, and interactive rail vehicle state and trackside infrastructure monitoring tasks.","PeriodicalId":13416,"journal":{"name":"IEEE Transactions on Intelligent Transportation Systems","volume":"26 2","pages":"1441-1453"},"PeriodicalIF":7.9000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Intelligent Transportation Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10806531/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose an accurate and robust multi-modal sensor fusion framework, MetroLoc, towards one of the most extreme scenarios, the large-scale metro environments. MetroLoc is built atop an IMU-centric state estimator that tightly couples light detection and ranging (LiDAR), visual, and inertial information with the convenience of loosely coupled methods. The proposed framework is composed of three submodules: IMU odometry, LiDAR-inertial odometry (LIO), and Visual-inertial odometry (VIO). The IMU is treated as the primary sensor, which achieves the observations from LIO and VIO to constrain the accelerometer and gyroscope biases. Compared to previous point-only LIO methods, our approach leverages more geometry information by introducing both line and plane features into motion estimation. The VIO also utilizes the environmental structure information by employing both lines and points. Our proposed method has been tested in the long-during metro environments with a maintenance vehicle. Experimental results show the system more accurate and robust than the state-of-the-art approaches with real-time performance. The proposed method can reach 0.278% maximum drift in translation even in the highly degenerated tunnels. Besides, we develop a series of Virtual Reality (VR) applications towards efficient, economical, and interactive rail vehicle state and trackside infrastructure monitoring tasks.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Intelligent Transportation Systems
IEEE Transactions on Intelligent Transportation Systems 工程技术-工程:电子与电气
CiteScore
14.80
自引率
12.90%
发文量
1872
审稿时长
7.5 months
期刊介绍: The theoretical, experimental and operational aspects of electrical and electronics engineering and information technologies as applied to Intelligent Transportation Systems (ITS). Intelligent Transportation Systems are defined as those systems utilizing synergistic technologies and systems engineering concepts to develop and improve transportation systems of all kinds. The scope of this interdisciplinary activity includes the promotion, consolidation and coordination of ITS technical activities among IEEE entities, and providing a focus for cooperative activities, both internally and externally.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信