{"title":"Synthesis and characterization of YBCO superconducting thin films doped with BaHfO3 via the TFA-MOD technique for potential aerospace applications","authors":"Murat Bektas , Isil Birlik , Erdal Celik","doi":"10.1016/j.physc.2024.1354633","DOIUrl":null,"url":null,"abstract":"<div><div>The study aims to improve the critical current density (<em>J<sub>c</sub></em>) and flux pinning of YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7-δ</sub> (YBCO) high-temperature superconducting films. The decline in <em>J<sub>c</sub></em> at high temperatures and magnetic fields is due to intrinsic crystalline anisotropy, thermal fluctuations, and lack of effective pinning centers. To tackle this, the study uses a novel approach by incorporating BaHfO<sub>3</sub> (BHO) nanostructures (dots, rods, or particles) as artificial pinning centers in YBCO films. The objective is to augment critical current density and enhance flux pinning properties using trifluoroacetates metal organic deposition method (TFA-MOD) on SrTiO<sub>3</sub> (STO) substrates, with a specific focus on applications in the aerospace industry. Characterization of YBCO solutions involves measuring contact angle, viscosity, and modulus. Thermal, structural, microstructural and superconducting properties of the films were scrutinized by Differential Thermal Analysis-Thermogravimetry (DTA-TG), Fourier Transform Infrared (FTIR), X-ray diffractometry (XRD), X-Ray Photoelectron Spectroscopy (XPS), Scanning Electron Microscopy-Energy Dispersive Spectroscopy (SEM-EDS) and Atomic Force Microscopy (AFM), Surface Profilometer (SP) and Physical Property Measurement System (PPMS). Rheological tests show viscosity decreases with temperature before stabilizing. Undoped YBCO exhibits good wetting on STO substrates. Heat treatment involves organic solvent removal and TFA decomposition, with FTIR and XRD analyses confirming decomposition of acetate complexes and strong c-axis texture. XPS results indicate consistent chemical compositions, while surface morphologies are flat and crack-free, with denser structures in BHO-doped films. Doping improves superconductivity up to a certain concentration, after which it decreases. Average film thickness is around 240 nm. Undoped YBCO films exhibit poor superconducting properties due to secondary phases, while BHO doping influences superconductivity, with an increase in critical current density up to a certain concentration, beyond which superconductivity is lost.</div></div>","PeriodicalId":20159,"journal":{"name":"Physica C-superconductivity and Its Applications","volume":"629 ","pages":"Article 1354633"},"PeriodicalIF":1.3000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica C-superconductivity and Its Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921453424001977","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The study aims to improve the critical current density (Jc) and flux pinning of YBa2Cu3O7-δ (YBCO) high-temperature superconducting films. The decline in Jc at high temperatures and magnetic fields is due to intrinsic crystalline anisotropy, thermal fluctuations, and lack of effective pinning centers. To tackle this, the study uses a novel approach by incorporating BaHfO3 (BHO) nanostructures (dots, rods, or particles) as artificial pinning centers in YBCO films. The objective is to augment critical current density and enhance flux pinning properties using trifluoroacetates metal organic deposition method (TFA-MOD) on SrTiO3 (STO) substrates, with a specific focus on applications in the aerospace industry. Characterization of YBCO solutions involves measuring contact angle, viscosity, and modulus. Thermal, structural, microstructural and superconducting properties of the films were scrutinized by Differential Thermal Analysis-Thermogravimetry (DTA-TG), Fourier Transform Infrared (FTIR), X-ray diffractometry (XRD), X-Ray Photoelectron Spectroscopy (XPS), Scanning Electron Microscopy-Energy Dispersive Spectroscopy (SEM-EDS) and Atomic Force Microscopy (AFM), Surface Profilometer (SP) and Physical Property Measurement System (PPMS). Rheological tests show viscosity decreases with temperature before stabilizing. Undoped YBCO exhibits good wetting on STO substrates. Heat treatment involves organic solvent removal and TFA decomposition, with FTIR and XRD analyses confirming decomposition of acetate complexes and strong c-axis texture. XPS results indicate consistent chemical compositions, while surface morphologies are flat and crack-free, with denser structures in BHO-doped films. Doping improves superconductivity up to a certain concentration, after which it decreases. Average film thickness is around 240 nm. Undoped YBCO films exhibit poor superconducting properties due to secondary phases, while BHO doping influences superconductivity, with an increase in critical current density up to a certain concentration, beyond which superconductivity is lost.
期刊介绍:
Physica C (Superconductivity and its Applications) publishes peer-reviewed papers on novel developments in the field of superconductivity. Topics include discovery of new superconducting materials and elucidation of their mechanisms, physics of vortex matter, enhancement of critical properties of superconductors, identification of novel properties and processing methods that improve their performance and promote new routes to applications of superconductivity.
The main goal of the journal is to publish:
1. Papers that substantially increase the understanding of the fundamental aspects and mechanisms of superconductivity and vortex matter through theoretical and experimental methods.
2. Papers that report on novel physical properties and processing of materials that substantially enhance their critical performance.
3. Papers that promote new or improved routes to applications of superconductivity and/or superconducting materials, and proof-of-concept novel proto-type superconducting devices.
The editors of the journal will select papers that are well written and based on thorough research that provide truly novel insights.