Vision transformers for automated detection of pig interactions in groups

IF 6.3 Q1 AGRICULTURAL ENGINEERING
Gbadegesin Taiwo, Sunil Vadera, Ali Alameer
{"title":"Vision transformers for automated detection of pig interactions in groups","authors":"Gbadegesin Taiwo,&nbsp;Sunil Vadera,&nbsp;Ali Alameer","doi":"10.1016/j.atech.2025.100774","DOIUrl":null,"url":null,"abstract":"<div><div>The interactive behaviour of pigs is an important determinant of their social development and overall well-being. Manual observation and identification of contact behaviour can be time-consuming and potentially subjective. This study presents a new method for the dynamic detection of pig head to rear interaction using the Vision Transformer (ViT). The ViT model achieved a high accuracy in detecting and classifying specific interaction behaviour as trained on the pig contact datasets, capturing interaction behaviour. The model's ability to recognize contextual spatial data enables strong detection even in complex contexts, due to the use of Gaussian Error Linear Unit (GELU) an activation function responsible for introduction of non-linear data to the model and Multi Head Attention feature that ensures all relevant details contained in a data are captured in Vision Transformer. The method provides an efficient method for monitoring swine behaviour for instance, contact between pigs, facilitating better livestock management and livestock welfare. The ViT can represent a significant improvement on current automated behaviour detection, opening new possibilities for accurate animal design and animal behaviour assessment with an accuracy and F1 score of 82.8 % and 82.7 %, respectively, while we have an AUC of 85 %.</div></div>","PeriodicalId":74813,"journal":{"name":"Smart agricultural technology","volume":"10 ","pages":"Article 100774"},"PeriodicalIF":6.3000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart agricultural technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772375525000085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

The interactive behaviour of pigs is an important determinant of their social development and overall well-being. Manual observation and identification of contact behaviour can be time-consuming and potentially subjective. This study presents a new method for the dynamic detection of pig head to rear interaction using the Vision Transformer (ViT). The ViT model achieved a high accuracy in detecting and classifying specific interaction behaviour as trained on the pig contact datasets, capturing interaction behaviour. The model's ability to recognize contextual spatial data enables strong detection even in complex contexts, due to the use of Gaussian Error Linear Unit (GELU) an activation function responsible for introduction of non-linear data to the model and Multi Head Attention feature that ensures all relevant details contained in a data are captured in Vision Transformer. The method provides an efficient method for monitoring swine behaviour for instance, contact between pigs, facilitating better livestock management and livestock welfare. The ViT can represent a significant improvement on current automated behaviour detection, opening new possibilities for accurate animal design and animal behaviour assessment with an accuracy and F1 score of 82.8 % and 82.7 %, respectively, while we have an AUC of 85 %.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信