Static and dynamic cutting forces in coriander crop harvesting: Engineering insights for harvester optimization

IF 6.3 Q1 AGRICULTURAL ENGINEERING
Aruna T N , Pramod Kumar Sahoo , Dilip Kumar Kushwaha , Nrusingh Charan Pradhan , Kishan Kumar , Soumya Krishnan V , Madhusudan B S , Rohit Bhojyareddy Gaddamwar , Abhishek Pandey , Avesh Kumar Singh , Zoltan Orban , Ali Salem
{"title":"Static and dynamic cutting forces in coriander crop harvesting: Engineering insights for harvester optimization","authors":"Aruna T N ,&nbsp;Pramod Kumar Sahoo ,&nbsp;Dilip Kumar Kushwaha ,&nbsp;Nrusingh Charan Pradhan ,&nbsp;Kishan Kumar ,&nbsp;Soumya Krishnan V ,&nbsp;Madhusudan B S ,&nbsp;Rohit Bhojyareddy Gaddamwar ,&nbsp;Abhishek Pandey ,&nbsp;Avesh Kumar Singh ,&nbsp;Zoltan Orban ,&nbsp;Ali Salem","doi":"10.1016/j.atech.2025.100772","DOIUrl":null,"url":null,"abstract":"<div><div>The study investigates the mechanical requirements for harvesting coriander (<em>Coriandrum sativum</em> L.) by analyzing static and dynamic cutting forces for three distinct varieties: SIMCO, GCr1, and GCr2. Through controlled laboratory experiments, the static cutting force was measured using a texture analyzer across variations in blade speed (2, 4, 6, 8, and 10 mm/s), stem number (1–5), cutting height (50, 75, 100, 125, and 150 mm), and moisture content (23 %, 30 %, and 37 %). The static cutting force for SIMCO was found to be the highest (151.6 N), followed by GCr1 (145.68 N) and GCr2 (140.48 N), primarily due to stem structure and diameter differences. The dynamic cutting force was also measured in the indoor soil bin using a reciprocating cutter bar by simulating the field conditions at varied forward speeds (0.3, 0.6, 0.9, and 1.2 m/s), cutter bar speeds (2, 8, 14, and 20 strokes/s), and cutting heights (50, 75, 100, 125, and 150 mm). For dynamic cutting, the SIMCO variety required an average maximum force of 33.14 N, which was 6.85 % and 7.06 % higher than GCr1 and GCr2 respectively. The dynamic cutting forces were influenced most significantly by cutter bar speed and forward speed, with optimal cutting achieved at 20 strokes/s cutter bar speed and 0.3 m/s forward speed. Response Surface Methodology (RSM) models with R² values above 0.99 effectively predicted both static and dynamic cutting forces, indicating strong model adequacy and providing detailed insights into the interactions between parameters. The analysis revealed that the number of stems and blade speed were the primary influencers on static cutting force, while the dynamic force was most affected by cutter bar speed and forward speed. This study highlights the importance of customized parameter settings to enhance harvester efficiency, reduce energy consumption, and minimize seed damage during harvest.</div></div>","PeriodicalId":74813,"journal":{"name":"Smart agricultural technology","volume":"10 ","pages":"Article 100772"},"PeriodicalIF":6.3000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart agricultural technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772375525000061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

The study investigates the mechanical requirements for harvesting coriander (Coriandrum sativum L.) by analyzing static and dynamic cutting forces for three distinct varieties: SIMCO, GCr1, and GCr2. Through controlled laboratory experiments, the static cutting force was measured using a texture analyzer across variations in blade speed (2, 4, 6, 8, and 10 mm/s), stem number (1–5), cutting height (50, 75, 100, 125, and 150 mm), and moisture content (23 %, 30 %, and 37 %). The static cutting force for SIMCO was found to be the highest (151.6 N), followed by GCr1 (145.68 N) and GCr2 (140.48 N), primarily due to stem structure and diameter differences. The dynamic cutting force was also measured in the indoor soil bin using a reciprocating cutter bar by simulating the field conditions at varied forward speeds (0.3, 0.6, 0.9, and 1.2 m/s), cutter bar speeds (2, 8, 14, and 20 strokes/s), and cutting heights (50, 75, 100, 125, and 150 mm). For dynamic cutting, the SIMCO variety required an average maximum force of 33.14 N, which was 6.85 % and 7.06 % higher than GCr1 and GCr2 respectively. The dynamic cutting forces were influenced most significantly by cutter bar speed and forward speed, with optimal cutting achieved at 20 strokes/s cutter bar speed and 0.3 m/s forward speed. Response Surface Methodology (RSM) models with R² values above 0.99 effectively predicted both static and dynamic cutting forces, indicating strong model adequacy and providing detailed insights into the interactions between parameters. The analysis revealed that the number of stems and blade speed were the primary influencers on static cutting force, while the dynamic force was most affected by cutter bar speed and forward speed. This study highlights the importance of customized parameter settings to enhance harvester efficiency, reduce energy consumption, and minimize seed damage during harvest.
收割芫荽作物时的静态和动态切割力:收割机优化的工程启示
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信