Advanced BLB disease assessment in paddy fields using multispectral UAV data and patch fragmentation metrics

IF 6.3 Q1 AGRICULTURAL ENGINEERING
Arif K Wijayanto , Lilik B Prasetyo , Sahid Agustian Hudjimartsu , Gunardi Sigit , Chiharu Hongo
{"title":"Advanced BLB disease assessment in paddy fields using multispectral UAV data and patch fragmentation metrics","authors":"Arif K Wijayanto ,&nbsp;Lilik B Prasetyo ,&nbsp;Sahid Agustian Hudjimartsu ,&nbsp;Gunardi Sigit ,&nbsp;Chiharu Hongo","doi":"10.1016/j.atech.2024.100766","DOIUrl":null,"url":null,"abstract":"<div><div>This study introduces an innovative method for assessing bacterial leaf blight (BLB) in paddy fields using multispectral UAV (Unmanned Aerial Vehicle) data and patch fragmentation analysis. Unlike traditional pixel-based approaches, which often lack spatial context, our method treats pixels as objects and evaluates their spatial relationships to determine BLB severity. Seven patch fragmentation metrics were derived from binarized vegetation indices to quantify BLB damage scores, carefully selected for their ability to describe the spatial arrangement and connectivity of potentially affected patches. This metric-driven approach captures the scale and intensity of BLB damage, facilitating precise assessment. The method demonstrated high accuracy, achieving an AUC of 0.938 with a 0.5-meter sampling window. This advancement enhances the precision of BLB damage assessment, particularly for applications such as crop insurance.</div></div>","PeriodicalId":74813,"journal":{"name":"Smart agricultural technology","volume":"10 ","pages":"Article 100766"},"PeriodicalIF":6.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart agricultural technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772375524003708","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduces an innovative method for assessing bacterial leaf blight (BLB) in paddy fields using multispectral UAV (Unmanned Aerial Vehicle) data and patch fragmentation analysis. Unlike traditional pixel-based approaches, which often lack spatial context, our method treats pixels as objects and evaluates their spatial relationships to determine BLB severity. Seven patch fragmentation metrics were derived from binarized vegetation indices to quantify BLB damage scores, carefully selected for their ability to describe the spatial arrangement and connectivity of potentially affected patches. This metric-driven approach captures the scale and intensity of BLB damage, facilitating precise assessment. The method demonstrated high accuracy, achieving an AUC of 0.938 with a 0.5-meter sampling window. This advancement enhances the precision of BLB damage assessment, particularly for applications such as crop insurance.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信