Damien Simonot , Céline Roux-Byl , Xiangzhen Xu , Willy Daney de Marcillac , Corentin Dabard , Mathieu G. Silly , Emmanuel Lhuillier , Thomas Pons , Simon Huppert , Agnès Maître
{"title":"Determination of band alignment of core/shell colloidal CdSe/CdS quantum dots, by optical and X-ray photo-electron spectroscopies","authors":"Damien Simonot , Céline Roux-Byl , Xiangzhen Xu , Willy Daney de Marcillac , Corentin Dabard , Mathieu G. Silly , Emmanuel Lhuillier , Thomas Pons , Simon Huppert , Agnès Maître","doi":"10.1016/j.mtquan.2025.100024","DOIUrl":null,"url":null,"abstract":"<div><div>Optical properties of multilayer semi-conductor nano-emitters are crucially dependent on the relative energy levels of their different components. For core/shell quantum dots, the relative energy difference between conduction band edge of core and shell materials induces, depending on its value, either a confinement of the electron within the core or a delocalization of its wave function within the whole quantum dot. This results in drastic consequences on the energy and the oscillator strength of the transitions. Surprisingly, the literature currently lacks a definitive value for this energy difference, called offset, between the conduction band edge of CdSe and CdS materials. Here, we develop a theoretical model expressing energy levels and considering quantum dot dimension, core/shell interface pressure, ligands and allowing to reliably determine the conduction band offset. Its value is determined experimentally using our model and both optical and X-ray photoelectron (XPS) spectroscopies.</div></div>","PeriodicalId":100894,"journal":{"name":"Materials Today Quantum","volume":"5 ","pages":"Article 100024"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Quantum","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950257825000022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Optical properties of multilayer semi-conductor nano-emitters are crucially dependent on the relative energy levels of their different components. For core/shell quantum dots, the relative energy difference between conduction band edge of core and shell materials induces, depending on its value, either a confinement of the electron within the core or a delocalization of its wave function within the whole quantum dot. This results in drastic consequences on the energy and the oscillator strength of the transitions. Surprisingly, the literature currently lacks a definitive value for this energy difference, called offset, between the conduction band edge of CdSe and CdS materials. Here, we develop a theoretical model expressing energy levels and considering quantum dot dimension, core/shell interface pressure, ligands and allowing to reliably determine the conduction band offset. Its value is determined experimentally using our model and both optical and X-ray photoelectron (XPS) spectroscopies.