{"title":"Decoding mutational signatures in breast cancer: Insights from a multi-cohort study","authors":"Margaux Betz , Andréa Witz , Julie Dardare , Cassandra Michel , Vincent Massard , Romain Boidot , Pauline Gilson , Jean-Louis Merlin , Alexandre Harlé","doi":"10.1016/j.tranon.2025.102315","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><div>Diagnosis and treatment decisions of hormonal breast cancers (BC) are now guided by genomic mutations determination, combined into mutational signatures, and provide insight into the patients’ genomic landscape. This work aims to compare genomic data and signatures extracted from tissue samples collected in the CICLADES study to existing cohorts. Ultimately, the goal is to prove the accuracy of smaller cohorts and provide new relevant data.</div></div><div><h3>Materials and methods</h3><div>DNA from patients of the CICLADES cohort was extracted, sequenced, and custom filtering was applied to the resulting files. Genomic data was pulled from 6 BC cohorts available on cBioPortal.com. In total, 2303 samples were analyzed. Mutational signatures were extracted and matched to known signatures of the Catalogue of Somatic Mutations in Cancer (COSMIC). Tumor Mutation Burden (TMB) and hypermutation were estimated and compared between samples.</div></div><div><h3>Results</h3><div><em>PIK3CA</em> and <em>TP53</em> represented the two genes highly mutated across all cohorts. TMB was similar between the CICLADES and CBSM groups, however the MSKCC population showed a significantly higher TMB than both. Nine signatures were extracted, with recurring Single Base Substitutions (SBS) signatures like SBS1, SBS2 and SBS5. The presence of APOBEC-specific signatures was concordant with cohorts presenting APOBEC enrichment. The mean number of mutations was significantly higher in enriched samples for each analyzed cohort.</div></div><div><h3>Conclusion</h3><div>The use of comprehensive genomic profiling provided accurate evaluation of the TMB and extraction of signatures consistent with published literature. The genomic analysis of the tissue samples of the CICLADES cohort brings new and relevant data, comparable to results found in bigger cohorts.</div></div>","PeriodicalId":48975,"journal":{"name":"Translational Oncology","volume":"53 ","pages":"Article 102315"},"PeriodicalIF":5.0000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Oncology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1936523325000464","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
Diagnosis and treatment decisions of hormonal breast cancers (BC) are now guided by genomic mutations determination, combined into mutational signatures, and provide insight into the patients’ genomic landscape. This work aims to compare genomic data and signatures extracted from tissue samples collected in the CICLADES study to existing cohorts. Ultimately, the goal is to prove the accuracy of smaller cohorts and provide new relevant data.
Materials and methods
DNA from patients of the CICLADES cohort was extracted, sequenced, and custom filtering was applied to the resulting files. Genomic data was pulled from 6 BC cohorts available on cBioPortal.com. In total, 2303 samples were analyzed. Mutational signatures were extracted and matched to known signatures of the Catalogue of Somatic Mutations in Cancer (COSMIC). Tumor Mutation Burden (TMB) and hypermutation were estimated and compared between samples.
Results
PIK3CA and TP53 represented the two genes highly mutated across all cohorts. TMB was similar between the CICLADES and CBSM groups, however the MSKCC population showed a significantly higher TMB than both. Nine signatures were extracted, with recurring Single Base Substitutions (SBS) signatures like SBS1, SBS2 and SBS5. The presence of APOBEC-specific signatures was concordant with cohorts presenting APOBEC enrichment. The mean number of mutations was significantly higher in enriched samples for each analyzed cohort.
Conclusion
The use of comprehensive genomic profiling provided accurate evaluation of the TMB and extraction of signatures consistent with published literature. The genomic analysis of the tissue samples of the CICLADES cohort brings new and relevant data, comparable to results found in bigger cohorts.
期刊介绍:
Translational Oncology publishes the results of novel research investigations which bridge the laboratory and clinical settings including risk assessment, cellular and molecular characterization, prevention, detection, diagnosis and treatment of human cancers with the overall goal of improving the clinical care of oncology patients. Translational Oncology will publish laboratory studies of novel therapeutic interventions as well as clinical trials which evaluate new treatment paradigms for cancer. Peer reviewed manuscript types include Original Reports, Reviews and Editorials.