Coupled queues with server interruptions: Some solutions

IF 1 4区 计算机科学 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Herwig Bruneel, Arnaud Devos
{"title":"Coupled queues with server interruptions: Some solutions","authors":"Herwig Bruneel,&nbsp;Arnaud Devos","doi":"10.1016/j.peva.2024.102466","DOIUrl":null,"url":null,"abstract":"<div><div>We study three different <em>discrete-time</em> queueing systems, which accommodate two types of customers, named type 1 and type 2. New customers arrive independently from slot to slot, but the numbers of arrivals of both types in any slot are possibly mutually dependent; their joint probability generating function (<em>pgf</em>) is <span><math><mrow><mi>A</mi><mrow><mo>(</mo><msub><mrow><mi>z</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>z</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></mrow></mrow></math></span>. The service times of all customers are deterministically equal to one time slot.</div><div>We first consider a scenario (<em>Option</em> <span><math><mi>A</mi></math></span>) with <em>one single server</em> which is to be shared by the two customer types. Here, we assume that type-1 customers have <em>absolute service priority</em> over type-2 customers. Moreover, the server is subject to <em>random server interruptions</em>, which occur independently from slot to slot. We derive a functional equation for the steady-state joint pgf <span><math><mrow><mi>U</mi><mrow><mo>(</mo><msub><mrow><mi>z</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>z</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></mrow></mrow></math></span> of the numbers of type-1 and type-2 customers in the system. Relying on the application of Rouché’s theorem, we are able to explicitly solve the functional equation for <em>arbitrary</em> arrival pgfs <span><math><mrow><mi>A</mi><mrow><mo>(</mo><msub><mrow><mi>z</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>z</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></mrow></mrow></math></span>, but more elegant results are obtained for some specific choices of <span><math><mrow><mi>A</mi><mrow><mo>(</mo><msub><mrow><mi>z</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>z</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></mrow></mrow></math></span>.</div><div>Next, we focus on two different scenarios (<em>Option</em> <span><math><mi>B</mi></math></span> and <em>Option</em> <span><math><mi>C</mi></math></span>) where both customer types have their <em>own dedicated server</em>. Here, there are no service priorities involved. In Option <span><math><mi>B</mi></math></span>, the two servers experience <em>simultaneous</em> interruptions, whereas in Option <span><math><mi>C</mi></math></span>, <em>only one</em> of the servers is subject to interruptions. Again, we derive functional equations for the pgf <span><math><mrow><mi>U</mi><mrow><mo>(</mo><msub><mrow><mi>z</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>z</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></mrow></mrow></math></span>. Although solving these equations for arbitrary arrival pgfs <span><math><mrow><mi>A</mi><mrow><mo>(</mo><msub><mrow><mi>z</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>z</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></mrow></mrow></math></span> seems infeasible, we succeed in finding exact closed-form solutions for specific choices of <span><math><mrow><mi>A</mi><mrow><mo>(</mo><msub><mrow><mi>z</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>z</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></mrow></mrow></math></span>. Remarkably, the results obtained for the single-server priority system in Option <span><math><mi>A</mi></math></span> can be used to solve a specific instance of Option <span><math><mi>B</mi></math></span>, where the arrivals of both types of customers during any time slot are <em>partly identical</em>. It turns out that <em>(fully or partly) identical</em> arrivals also allow explicit solutions for Option <span><math><mi>C</mi></math></span>. In addition, we also provide other examples where the functional equations for Options <span><math><mi>B</mi></math></span> and <span><math><mi>C</mi></math></span> can be solved explicitly.</div></div>","PeriodicalId":19964,"journal":{"name":"Performance Evaluation","volume":"167 ","pages":"Article 102466"},"PeriodicalIF":1.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Performance Evaluation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166531624000713","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

We study three different discrete-time queueing systems, which accommodate two types of customers, named type 1 and type 2. New customers arrive independently from slot to slot, but the numbers of arrivals of both types in any slot are possibly mutually dependent; their joint probability generating function (pgf) is A(z1,z2). The service times of all customers are deterministically equal to one time slot.
We first consider a scenario (Option A) with one single server which is to be shared by the two customer types. Here, we assume that type-1 customers have absolute service priority over type-2 customers. Moreover, the server is subject to random server interruptions, which occur independently from slot to slot. We derive a functional equation for the steady-state joint pgf U(z1,z2) of the numbers of type-1 and type-2 customers in the system. Relying on the application of Rouché’s theorem, we are able to explicitly solve the functional equation for arbitrary arrival pgfs A(z1,z2), but more elegant results are obtained for some specific choices of A(z1,z2).
Next, we focus on two different scenarios (Option B and Option C) where both customer types have their own dedicated server. Here, there are no service priorities involved. In Option B, the two servers experience simultaneous interruptions, whereas in Option C, only one of the servers is subject to interruptions. Again, we derive functional equations for the pgf U(z1,z2). Although solving these equations for arbitrary arrival pgfs A(z1,z2) seems infeasible, we succeed in finding exact closed-form solutions for specific choices of A(z1,z2). Remarkably, the results obtained for the single-server priority system in Option A can be used to solve a specific instance of Option B, where the arrivals of both types of customers during any time slot are partly identical. It turns out that (fully or partly) identical arrivals also allow explicit solutions for Option C. In addition, we also provide other examples where the functional equations for Options B and C can be solved explicitly.
带有服务器中断的耦合队列:一些解决方案
我们研究了三种不同的离散时间排队系统,它们容纳两种类型的顾客,分别命名为类型1和类型2。新用户在不同时段独立到达,但在任何时段两种类型的到达数量可能是相互依赖的;它们的联合概率生成函数是A(z1,z2)。所有客户的服务时间确定等于一个时隙。我们首先考虑一个场景(选项a),其中一个服务器将由两种客户类型共享。这里,我们假设类型1的客户比类型2的客户拥有绝对的服务优先级。此外,服务器还会受到随机服务器中断的影响,这些中断会独立地发生在各个插槽之间。导出了系统中1型和2型客户数量的稳态联合pgf U(z1,z2)的泛函方程。依靠rouch定理的应用,我们可以显式地求解任意到达pgfs A(z1,z2)的泛函方程,但对于A(z1,z2)的某些特定选择,我们得到了更优雅的结果。接下来,我们关注两种不同的场景(选项B和选项C),其中两种客户类型都有自己的专用服务器。这里不涉及服务优先级。在选项B中,两个服务器同时经历中断,而在选项C中,只有一个服务器受到中断的影响。再一次,我们推导出pgf U(z1,z2)的泛函方程。虽然解任意到达的pgfs A(z1,z2)的这些方程似乎是不可行的,但我们成功地找到了A(z1,z2)的特定选择的精确封闭解。值得注意的是,在选项A中获得的单服务器优先级系统的结果可以用于解决选项B的特定实例,其中两种类型的客户在任何时间段的到达部分相同。事实证明,(完全或部分)相同的到达也允许选项C的显式解。此外,我们还提供了选项B和C的函数方程可以显式解的其他示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Performance Evaluation
Performance Evaluation 工程技术-计算机:理论方法
CiteScore
3.10
自引率
0.00%
发文量
20
审稿时长
24 days
期刊介绍: Performance Evaluation functions as a leading journal in the area of modeling, measurement, and evaluation of performance aspects of computing and communication systems. As such, it aims to present a balanced and complete view of the entire Performance Evaluation profession. Hence, the journal is interested in papers that focus on one or more of the following dimensions: -Define new performance evaluation tools, including measurement and monitoring tools as well as modeling and analytic techniques -Provide new insights into the performance of computing and communication systems -Introduce new application areas where performance evaluation tools can play an important role and creative new uses for performance evaluation tools. More specifically, common application areas of interest include the performance of: -Resource allocation and control methods and algorithms (e.g. routing and flow control in networks, bandwidth allocation, processor scheduling, memory management) -System architecture, design and implementation -Cognitive radio -VANETs -Social networks and media -Energy efficient ICT -Energy harvesting -Data centers -Data centric networks -System reliability -System tuning and capacity planning -Wireless and sensor networks -Autonomic and self-organizing systems -Embedded systems -Network science
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信