Non-invasive prediction of sweet cherry soluble solids content using dielectric spectroscopy and down-sampling techniques

IF 6.3 Q1 AGRICULTURAL ENGINEERING
Kamil Sacilik , Necati Cetin , Burak Ozbey , Fernando Auat Cheein
{"title":"Non-invasive prediction of sweet cherry soluble solids content using dielectric spectroscopy and down-sampling techniques","authors":"Kamil Sacilik ,&nbsp;Necati Cetin ,&nbsp;Burak Ozbey ,&nbsp;Fernando Auat Cheein","doi":"10.1016/j.atech.2025.100782","DOIUrl":null,"url":null,"abstract":"<div><div>The soluble solid content (SSC) in fruits significantly influences consumers' taste, aroma, and flavor preferences. It also plays a crucial role for farmers and wholesalers in determining the optimal harvest period for marketing. Dielectric spectroscopy, an innovative and non-invasive technique, has shown promise for various applications in the food and agriculture sectors. This study introduces an open-ended coaxial line probe measurement system to non-invasively determine the SSC of sweet cherries at different radio and microwave frequencies. Key parameters such as the dielectric constant (ε′), loss factor (ε′′), loss tangent (tan δ), and SSC of sweet cherries were measured across different harvest periods. The dielectric property frequency ranges were down-sampled from 300 MHz to 15 MHz. Using dielectric spectroscopy, we implemented predictive models: support vector regression (SVR) and multilayer perceptron (MLP), that demonstrated extremely low MAE and RMSE, with correlation coefficients (R) exceeding 0.97 for SVR and 0.96 for MLP. The down-sampled frequency ranges for dielectric properties yielded consistently high performance across all subsets, demonstrating comparable results. These findings suggest that a dielectric measurement system designed for SSC estimation using fewer frequencies could effectively reduce costs while maintaining accuracy.</div></div>","PeriodicalId":74813,"journal":{"name":"Smart agricultural technology","volume":"10 ","pages":"Article 100782"},"PeriodicalIF":6.3000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart agricultural technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772375525000164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

The soluble solid content (SSC) in fruits significantly influences consumers' taste, aroma, and flavor preferences. It also plays a crucial role for farmers and wholesalers in determining the optimal harvest period for marketing. Dielectric spectroscopy, an innovative and non-invasive technique, has shown promise for various applications in the food and agriculture sectors. This study introduces an open-ended coaxial line probe measurement system to non-invasively determine the SSC of sweet cherries at different radio and microwave frequencies. Key parameters such as the dielectric constant (ε′), loss factor (ε′′), loss tangent (tan δ), and SSC of sweet cherries were measured across different harvest periods. The dielectric property frequency ranges were down-sampled from 300 MHz to 15 MHz. Using dielectric spectroscopy, we implemented predictive models: support vector regression (SVR) and multilayer perceptron (MLP), that demonstrated extremely low MAE and RMSE, with correlation coefficients (R) exceeding 0.97 for SVR and 0.96 for MLP. The down-sampled frequency ranges for dielectric properties yielded consistently high performance across all subsets, demonstrating comparable results. These findings suggest that a dielectric measurement system designed for SSC estimation using fewer frequencies could effectively reduce costs while maintaining accuracy.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信