{"title":"Variations in pore structure in subaerial lava flows at Nishinoshima, Japan, inferred from physical properties","authors":"Yuya Akamatsu , Takeshi Suzuki , Noriko Tada , Kazuki Sawayama , Hiroshi Ichihara , Ikuo Katayama , Genya Sakamoto , Yuhji Yamamoto , Fukashi Maeno , Kenta Yoshida","doi":"10.1016/j.jvolgeores.2024.108262","DOIUrl":null,"url":null,"abstract":"<div><div>Nishinoshima, a volcanic island in the Izu–Ogasawara arc, Japan, has erupted intermittently since activity restarted in 2013, alternating primarily between effusive lava flows and explosive eruptions. An understanding of pore structure in lava flow clues to the volcanic processes that accompany eruption, including the physical conditions during effusion, the efficiency of gas escape, and seawater circulation within the edifice. We investigated the relationships between various physical properties of the lava flows on Nishinoshima to characterize their internal pore structure. Laboratory measurements of porosity, density, permeability, electrical resistivity, and P-wave velocity were conducted at ambient temperature and atmospheric pressure on andesitic lava blocks collected by land-based surveys conducted in 2016, 2019, and 2021. The measured resistivities and P-wave velocities vary with porosity, although the trends are different in different lithofacies (vesicular, dense, and foliated blocks). By comparing these variations with theoretical models, they can be attributed to differences in connectivity and geometry of pore space in the different lithofacies. These lithofacies-dependent pore structures contribute to the observed variations in permeability, which can vary by as much as five orders of magnitude for a given porosity. The differences in pore structure and permeability may be related to post-eruption processes, where shear deformation during lava flow emplacement flattened and elongated the bubbles, leading to low aspect ratios, smaller apertures, and higher connectivity in the foliated lavas. Our data and interpretations could assist in estimating the internal pore structures at Nishinoshima through geophysical surveys, although further investigation incorporating submarine samples is necessary.</div></div>","PeriodicalId":54753,"journal":{"name":"Journal of Volcanology and Geothermal Research","volume":"458 ","pages":"Article 108262"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Volcanology and Geothermal Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377027324002555","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Nishinoshima, a volcanic island in the Izu–Ogasawara arc, Japan, has erupted intermittently since activity restarted in 2013, alternating primarily between effusive lava flows and explosive eruptions. An understanding of pore structure in lava flow clues to the volcanic processes that accompany eruption, including the physical conditions during effusion, the efficiency of gas escape, and seawater circulation within the edifice. We investigated the relationships between various physical properties of the lava flows on Nishinoshima to characterize their internal pore structure. Laboratory measurements of porosity, density, permeability, electrical resistivity, and P-wave velocity were conducted at ambient temperature and atmospheric pressure on andesitic lava blocks collected by land-based surveys conducted in 2016, 2019, and 2021. The measured resistivities and P-wave velocities vary with porosity, although the trends are different in different lithofacies (vesicular, dense, and foliated blocks). By comparing these variations with theoretical models, they can be attributed to differences in connectivity and geometry of pore space in the different lithofacies. These lithofacies-dependent pore structures contribute to the observed variations in permeability, which can vary by as much as five orders of magnitude for a given porosity. The differences in pore structure and permeability may be related to post-eruption processes, where shear deformation during lava flow emplacement flattened and elongated the bubbles, leading to low aspect ratios, smaller apertures, and higher connectivity in the foliated lavas. Our data and interpretations could assist in estimating the internal pore structures at Nishinoshima through geophysical surveys, although further investigation incorporating submarine samples is necessary.
期刊介绍:
An international research journal with focus on volcanic and geothermal processes and their impact on the environment and society.
Submission of papers covering the following aspects of volcanology and geothermal research are encouraged:
(1) Geological aspects of volcanic systems: volcano stratigraphy, structure and tectonic influence; eruptive history; evolution of volcanic landforms; eruption style and progress; dispersal patterns of lava and ash; analysis of real-time eruption observations.
(2) Geochemical and petrological aspects of volcanic rocks: magma genesis and evolution; crystallization; volatile compositions, solubility, and degassing; volcanic petrography and textural analysis.
(3) Hydrology, geochemistry and measurement of volcanic and hydrothermal fluids: volcanic gas emissions; fumaroles and springs; crater lakes; hydrothermal mineralization.
(4) Geophysical aspects of volcanic systems: physical properties of volcanic rocks and magmas; heat flow studies; volcano seismology, geodesy and remote sensing.
(5) Computational modeling and experimental simulation of magmatic and hydrothermal processes: eruption dynamics; magma transport and storage; plume dynamics and ash dispersal; lava flow dynamics; hydrothermal fluid flow; thermodynamics of aqueous fluids and melts.
(6) Volcano hazard and risk research: hazard zonation methodology, development of forecasting tools; assessment techniques for vulnerability and impact.