Dynamic analysis and application of data-driven green behavior propagation on heterogeneous networks

IF 6.7 1区 工程技术 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Linhe Zhu , Bingxin Li
{"title":"Dynamic analysis and application of data-driven green behavior propagation on heterogeneous networks","authors":"Linhe Zhu ,&nbsp;Bingxin Li","doi":"10.1016/j.cie.2024.110822","DOIUrl":null,"url":null,"abstract":"<div><div>Clear waters and lush mountains constitute invaluable assets, and the sustainable development of the energy economy relies on green behavior. This paper establishes a Centrist–Positive–Negative system for the propagation of green behavior on heterogeneous networks by considering the transition mechanisms among individuals with different attitudes. The equilibrium points of the system are computed, and the sufficient and necessary conditions for positive equilibrium points are provided. We analyze the necessary conditions for Turing instability and the first-order conditions for parameter identification based on optimal control. Numerical simulation results indicate that various network structures can influence the timing of Turing bifurcation. Moreover, the presence of heterogeneity within networks exacerbates the instability of solutions. Media publicity and government management notably exert an inverted U-shaped influence on outcomes. Furthermore, the homogeneity or heterogeneity of the networks should not affect the effectiveness of parameter identification. Utilizing accurate data from the Policy Research Center for Environment and Economy and the China National Environmental Monitoring Centre, we conduct parameter identification on the effectiveness of government management in 13 cities in Jiangsu Province in 2021, yielding promising results. Upon comparison of three time series forecasting models, the LSTM model demonstrates superior performance. A parameter identifying the effectiveness of government management through the prediction of comprehensive air quality indices by using LSTM neural networks yields similarly favorable outcomes. Extending the network to a larger scale further enhances identification performance.</div></div>","PeriodicalId":55220,"journal":{"name":"Computers & Industrial Engineering","volume":"200 ","pages":"Article 110822"},"PeriodicalIF":6.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Industrial Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360835224009446","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Clear waters and lush mountains constitute invaluable assets, and the sustainable development of the energy economy relies on green behavior. This paper establishes a Centrist–Positive–Negative system for the propagation of green behavior on heterogeneous networks by considering the transition mechanisms among individuals with different attitudes. The equilibrium points of the system are computed, and the sufficient and necessary conditions for positive equilibrium points are provided. We analyze the necessary conditions for Turing instability and the first-order conditions for parameter identification based on optimal control. Numerical simulation results indicate that various network structures can influence the timing of Turing bifurcation. Moreover, the presence of heterogeneity within networks exacerbates the instability of solutions. Media publicity and government management notably exert an inverted U-shaped influence on outcomes. Furthermore, the homogeneity or heterogeneity of the networks should not affect the effectiveness of parameter identification. Utilizing accurate data from the Policy Research Center for Environment and Economy and the China National Environmental Monitoring Centre, we conduct parameter identification on the effectiveness of government management in 13 cities in Jiangsu Province in 2021, yielding promising results. Upon comparison of three time series forecasting models, the LSTM model demonstrates superior performance. A parameter identifying the effectiveness of government management through the prediction of comprehensive air quality indices by using LSTM neural networks yields similarly favorable outcomes. Extending the network to a larger scale further enhances identification performance.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Industrial Engineering
Computers & Industrial Engineering 工程技术-工程:工业
CiteScore
12.70
自引率
12.70%
发文量
794
审稿时长
10.6 months
期刊介绍: Computers & Industrial Engineering (CAIE) is dedicated to researchers, educators, and practitioners in industrial engineering and related fields. Pioneering the integration of computers in research, education, and practice, industrial engineering has evolved to make computers and electronic communication integral to its domain. CAIE publishes original contributions focusing on the development of novel computerized methodologies to address industrial engineering problems. It also highlights the applications of these methodologies to issues within the broader industrial engineering and associated communities. The journal actively encourages submissions that push the boundaries of fundamental theories and concepts in industrial engineering techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信