Aurélie Jacob , Evelyn Sobotka , Erwin Povoden-Karadeniz
{"title":"Thermodynamic modeling of multicomponent MX phases (M= Nb,Ti,V; X=C,N) in steel","authors":"Aurélie Jacob , Evelyn Sobotka , Erwin Povoden-Karadeniz","doi":"10.1016/j.calphad.2024.102795","DOIUrl":null,"url":null,"abstract":"<div><div>The microstructure and properties of micro-alloyed steels are controlled by small concentrations of the elements Nb, Ti, V. In combination to C and N they form so-called FCC-structured carbonitride phase, producing a miscibility gap with FCC-Fe. In the present work, we review and assessed the available thermodynamic modeling of the MX phases in the framework of applied Calphad to computational thermodynamics and kinetics. Within this work, it was found that binary alloy system such as Fe-Nb, Nb-C and Nb-N as well as ternary M-(C,N) (M standing for metal) needed to be re-optimized in order to get accurate descriptions for multicomponent extensions with relevance for simulations in micro-alloyed steels. The reassessed description is edited in an open-source multi-component thermodynamic database (mc_fe_MX) and used to calculate physical interfacial energy which can be used for predictive precipitation simulation.</div></div>","PeriodicalId":9436,"journal":{"name":"Calphad-computer Coupling of Phase Diagrams and Thermochemistry","volume":"88 ","pages":"Article 102795"},"PeriodicalIF":1.9000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Calphad-computer Coupling of Phase Diagrams and Thermochemistry","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0364591624001378","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The microstructure and properties of micro-alloyed steels are controlled by small concentrations of the elements Nb, Ti, V. In combination to C and N they form so-called FCC-structured carbonitride phase, producing a miscibility gap with FCC-Fe. In the present work, we review and assessed the available thermodynamic modeling of the MX phases in the framework of applied Calphad to computational thermodynamics and kinetics. Within this work, it was found that binary alloy system such as Fe-Nb, Nb-C and Nb-N as well as ternary M-(C,N) (M standing for metal) needed to be re-optimized in order to get accurate descriptions for multicomponent extensions with relevance for simulations in micro-alloyed steels. The reassessed description is edited in an open-source multi-component thermodynamic database (mc_fe_MX) and used to calculate physical interfacial energy which can be used for predictive precipitation simulation.
期刊介绍:
The design of industrial processes requires reliable thermodynamic data. CALPHAD (Computer Coupling of Phase Diagrams and Thermochemistry) aims to promote computational thermodynamics through development of models to represent thermodynamic properties for various phases which permit prediction of properties of multicomponent systems from those of binary and ternary subsystems, critical assessment of data and their incorporation into self-consistent databases, development of software to optimize and derive thermodynamic parameters and the development and use of databanks for calculations to improve understanding of various industrial and technological processes. This work is disseminated through the CALPHAD journal and its annual conference.