Optimizing ibrutinib bioavailability: Formulation and assessment of hydroxypropyl-β-cyclodextrin-based nanosponge delivery systems

Q2 Agricultural and Biological Sciences
Sunitha Sampathi , Nitiraj Kulkarni , D.V.R.N. Bhikshapathi , Jagadish V. Tawade , Nainaru Tarakaramu , Rzgar Farooq Rashid , Aziz Kubaev
{"title":"Optimizing ibrutinib bioavailability: Formulation and assessment of hydroxypropyl-β-cyclodextrin-based nanosponge delivery systems","authors":"Sunitha Sampathi ,&nbsp;Nitiraj Kulkarni ,&nbsp;D.V.R.N. Bhikshapathi ,&nbsp;Jagadish V. Tawade ,&nbsp;Nainaru Tarakaramu ,&nbsp;Rzgar Farooq Rashid ,&nbsp;Aziz Kubaev","doi":"10.1016/j.crphar.2025.100213","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>The current research aims to improve the oral bioavailability of ibrutinib (IBR), a class II drug with low solubility, through the formulation of nanosponges (NSPs) that incorporate IBR, utilizing Hydroxypropyl β-cyclodextrin (HPβCD) and 1,1′-carbonyldiimidazole (CDI) as cross-linking agent.</div></div><div><h3>Methods</h3><div>IBR-loaded HPβCD-NSPs were formulated by optimizing the molar proportion of HPβCD to CDI, as well as stirring rate and duration using a design-based methodology. The synthesized nanoparticles (NSPs) were examined for size, potential, and entrapment of drug. Characterization was performed by X-ray diffraction analysis, Fourier Transform Infrared Spectroscopy (FT-IR), and Differential Scanning Calorimetry (DSC), to assess compatibility. Permeability studies were conducted, followed by in vitro and in vivo assessments.</div></div><div><h3>Results</h3><div>The optimized IBR-loaded HPβCD NSPs demonstrated a mean particle size of 145.6 ± 6.8 nm, a PDI of 0.170 ± 0.036, and an EE of 71.04 ± 2.40%. Further validation through zeta sizing, microscopic and spectral analysis, release studies, and pharmacokinetic assessments confirmed the optimization. The HPβCD NSPs demonstrated 14.96 times higher AUC0-t (area under the curve) with a Cmax increase of 6.45 times compared to the free drug, indicating a substantial improvement in bioavailability.</div></div><div><h3>Conclusion</h3><div>IBR-loaded HPβCD NSPs offer a promising strategy for improved drug release and bioavailability, which could significantly benefit melanoma treatment.</div></div>","PeriodicalId":10877,"journal":{"name":"Current Research in Pharmacology and Drug Discovery","volume":"8 ","pages":"Article 100213"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Pharmacology and Drug Discovery","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S259025712500001X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Background

The current research aims to improve the oral bioavailability of ibrutinib (IBR), a class II drug with low solubility, through the formulation of nanosponges (NSPs) that incorporate IBR, utilizing Hydroxypropyl β-cyclodextrin (HPβCD) and 1,1′-carbonyldiimidazole (CDI) as cross-linking agent.

Methods

IBR-loaded HPβCD-NSPs were formulated by optimizing the molar proportion of HPβCD to CDI, as well as stirring rate and duration using a design-based methodology. The synthesized nanoparticles (NSPs) were examined for size, potential, and entrapment of drug. Characterization was performed by X-ray diffraction analysis, Fourier Transform Infrared Spectroscopy (FT-IR), and Differential Scanning Calorimetry (DSC), to assess compatibility. Permeability studies were conducted, followed by in vitro and in vivo assessments.

Results

The optimized IBR-loaded HPβCD NSPs demonstrated a mean particle size of 145.6 ± 6.8 nm, a PDI of 0.170 ± 0.036, and an EE of 71.04 ± 2.40%. Further validation through zeta sizing, microscopic and spectral analysis, release studies, and pharmacokinetic assessments confirmed the optimization. The HPβCD NSPs demonstrated 14.96 times higher AUC0-t (area under the curve) with a Cmax increase of 6.45 times compared to the free drug, indicating a substantial improvement in bioavailability.

Conclusion

IBR-loaded HPβCD NSPs offer a promising strategy for improved drug release and bioavailability, which could significantly benefit melanoma treatment.

Abstract Image

优化依鲁替尼的生物利用度:羟丙基-β-环糊精纳米海绵给药系统的配方和评估
本研究旨在以羟丙基β-环糊精(HPβCD)和1,1′-羰基二咪唑(CDI)为交联剂,制备含有IBR的纳米海绵(nsp),以提高IBR的口服生物利用度。IBR是一类低溶解度的II类药物。方法采用基于设计的方法,通过优化HPβCD与CDI的摩尔比、搅拌速率和搅拌时间,制备负载sibr的HPβCD- nsps。研究了合成的纳米颗粒(NSPs)的大小、潜力和药物的包裹性。通过x射线衍射分析、傅里叶变换红外光谱(FT-IR)和差示扫描量热法(DSC)进行表征,以评估相容性。进行了渗透性研究,随后进行了体外和体内评估。结果优化后的ibr负载的HPβCD NSPs平均粒径为145.6±6.8 nm, PDI为0.170±0.036,EE为71.04±2.40%。通过zeta尺寸、显微镜和光谱分析、释放研究和药代动力学评估进一步验证了该优化方案。与游离药物相比,HPβCD NSPs的AUC0-t(曲线下面积)提高了14.96倍,Cmax提高了6.45倍,表明其生物利用度有了显著提高。结论ibr负载的HPβCD NSPs具有改善药物释放和生物利用度的良好策略,可显著促进黑色素瘤的治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Research in Pharmacology and Drug Discovery
Current Research in Pharmacology and Drug Discovery Agricultural and Biological Sciences-Animal Science and Zoology
CiteScore
6.40
自引率
0.00%
发文量
65
审稿时长
40 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信