MORIX: Machine learning-aided framework for lethality detection and MORtality inference with eXplainable artificial intelligence in MAFLD subjects

Domenico Lofù , Paolo Sorino , Tommaso Colafiglio , Caterina Bonfiglio , Rossella Donghia , Gianluigi Giannelli , Angela Lombardi , Tommaso Di Noia , Eugenio Di Sciascio , Fedelucio Narducci
{"title":"MORIX: Machine learning-aided framework for lethality detection and MORtality inference with eXplainable artificial intelligence in MAFLD subjects","authors":"Domenico Lofù ,&nbsp;Paolo Sorino ,&nbsp;Tommaso Colafiglio ,&nbsp;Caterina Bonfiglio ,&nbsp;Rossella Donghia ,&nbsp;Gianluigi Giannelli ,&nbsp;Angela Lombardi ,&nbsp;Tommaso Di Noia ,&nbsp;Eugenio Di Sciascio ,&nbsp;Fedelucio Narducci","doi":"10.1016/j.cmpbup.2024.100176","DOIUrl":null,"url":null,"abstract":"<div><div>Metabolic dysfunction-associated fatty liver disease (MAFLD) introduces new diagnostic criteria for fatty liver disease that are independent of alcohol consumption and viral hepatitis infection. Therefore, investigating how biochemical and anthropometric factors influence mortality in MAFLD subjects is of significant interest. In this work, we propose MORIX, an Artificial Intelligence-based framework capable of predicting fatal mortality outcomes in subjects with MAFLD. MORIX utilizes data from epidemiological datasets containing carefully selected anthropometric and biochemical information. This selection is achieved through Recursive Feature Elimination (RFE) using a Random Forest (RF) to train Machine Learning (ML) algorithms and provide a mortality risk (Yes/No) output. To provide physicians with a valuable tool, MORIX was trained and tested on a dataset of MAFLD subjects, comparing five different models: Random Forest (RF), eXtreme Gradient Boosting (XGB), Support Vector Machine (SVM), Multilayer Perceptron (MLP), and Light Gradient Boosting Model (LGBM) in a 5-fold cross-validation training strategy. Experimental results identified the RF as the best model, achieving a high accuracy for both mortality risks predicted. Additionally, an eXplainable Artificial Intelligence (XAI) analysis was conducted to clarify the diagnostic logic of the RF model and to assess the impact of each feature to the prediction. Moreover, a web application was developed to predict mortality risk and provide explanations of how the input features influenced the final prediction. In conclusion, the MORIX framework is easy to apply, and the required parameters are readily available in healthcare datasets, making it a practical tool for medical professionals.</div></div>","PeriodicalId":72670,"journal":{"name":"Computer methods and programs in biomedicine update","volume":"7 ","pages":"Article 100176"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer methods and programs in biomedicine update","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666990024000430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Metabolic dysfunction-associated fatty liver disease (MAFLD) introduces new diagnostic criteria for fatty liver disease that are independent of alcohol consumption and viral hepatitis infection. Therefore, investigating how biochemical and anthropometric factors influence mortality in MAFLD subjects is of significant interest. In this work, we propose MORIX, an Artificial Intelligence-based framework capable of predicting fatal mortality outcomes in subjects with MAFLD. MORIX utilizes data from epidemiological datasets containing carefully selected anthropometric and biochemical information. This selection is achieved through Recursive Feature Elimination (RFE) using a Random Forest (RF) to train Machine Learning (ML) algorithms and provide a mortality risk (Yes/No) output. To provide physicians with a valuable tool, MORIX was trained and tested on a dataset of MAFLD subjects, comparing five different models: Random Forest (RF), eXtreme Gradient Boosting (XGB), Support Vector Machine (SVM), Multilayer Perceptron (MLP), and Light Gradient Boosting Model (LGBM) in a 5-fold cross-validation training strategy. Experimental results identified the RF as the best model, achieving a high accuracy for both mortality risks predicted. Additionally, an eXplainable Artificial Intelligence (XAI) analysis was conducted to clarify the diagnostic logic of the RF model and to assess the impact of each feature to the prediction. Moreover, a web application was developed to predict mortality risk and provide explanations of how the input features influenced the final prediction. In conclusion, the MORIX framework is easy to apply, and the required parameters are readily available in healthcare datasets, making it a practical tool for medical professionals.
代谢功能障碍相关性脂肪肝(MAFLD)引入了新的脂肪肝诊断标准,与饮酒和病毒性肝炎感染无关。因此,研究生化和人体测量因素如何影响 MAFLD 受试者的死亡率具有重要意义。在这项工作中,我们提出了基于人工智能的 MORIX 框架,该框架能够预测 MAFLD 患者的致命死亡结果。MORIX 利用的数据来自流行病学数据集,其中包含精心挑选的人体测量和生化信息。这种选择是通过使用随机森林(RF)的递归特征消除(RFE)来实现的,以训练机器学习(ML)算法并提供死亡风险(是/否)输出。为了给医生提供有价值的工具,我们在 MAFLD 受试者的数据集上对 MORIX 进行了训练和测试,比较了五种不同的模型:随机森林 (RF)、极端梯度提升 (XGB)、支持向量机 (SVM)、多层感知器 (MLP) 和轻梯度提升模型 (LGBM) 采用 5 倍交叉验证训练策略。实验结果表明,RF 是最佳模型,在预测两种死亡风险方面都达到了很高的准确度。此外,还进行了可扩展人工智能(XAI)分析,以明确 RF 模型的诊断逻辑,并评估每个特征对预测的影响。此外,还开发了一个网络应用程序来预测死亡风险,并解释输入特征如何影响最终预测结果。总之,MORIX 框架易于应用,所需的参数在医疗数据集中随处可见,是医疗专业人员的实用工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.90
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信