Multimodal Cross Global Learnable Attention Network for MR images denoising with arbitrary modal missing

IF 5.4 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Mingfu Jiang , Shuai Wang , Ka-Hou Chan , Yue Sun , Yi Xu , Zhuoneng Zhang , Qinquan Gao , Zhifan Gao , Tong Tong , Hing-Chiu Chang , Tao Tan
{"title":"Multimodal Cross Global Learnable Attention Network for MR images denoising with arbitrary modal missing","authors":"Mingfu Jiang ,&nbsp;Shuai Wang ,&nbsp;Ka-Hou Chan ,&nbsp;Yue Sun ,&nbsp;Yi Xu ,&nbsp;Zhuoneng Zhang ,&nbsp;Qinquan Gao ,&nbsp;Zhifan Gao ,&nbsp;Tong Tong ,&nbsp;Hing-Chiu Chang ,&nbsp;Tao Tan","doi":"10.1016/j.compmedimag.2025.102497","DOIUrl":null,"url":null,"abstract":"<div><div>Magnetic Resonance Imaging (MRI) generates medical images of multiple sequences, i.e., multimodal, from different contrasts. However, noise will reduce the quality of MR images, and then affect the doctor’s diagnosis of diseases. Existing filtering methods, transform-domain methods, statistical methods and Convolutional Neural Network (CNN) methods main aim to denoise individual sequences of images without considering the relationships between multiple different sequences. They cannot balance the extraction of high-dimensional and low-dimensional features in MR images, and hard to maintain a good balance between preserving image texture details and denoising strength. To overcome these challenges, this work proposes a controllable Multimodal Cross-Global Learnable Attention Network (MMCGLANet) for MR image denoising with Arbitrary Modal Missing. Specifically, Encoder is employed to extract the shallow features of the image which share weight module, and Convolutional Long Short-Term Memory(ConvLSTM) is employed to extract the associated features between different frames within the same modal. Cross Global Learnable Attention Network(CGLANet) is employed to extract and fuse image features between multimodal and within the same modality. In addition, sequence code is employed to label missing modalities, which allows for Arbitrary Modal Missing during model training, validation, and testing. Experimental results demonstrate that our method has achieved good denoising results on different public and real MR image dataset.</div></div>","PeriodicalId":50631,"journal":{"name":"Computerized Medical Imaging and Graphics","volume":"121 ","pages":"Article 102497"},"PeriodicalIF":5.4000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computerized Medical Imaging and Graphics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0895611125000060","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Magnetic Resonance Imaging (MRI) generates medical images of multiple sequences, i.e., multimodal, from different contrasts. However, noise will reduce the quality of MR images, and then affect the doctor’s diagnosis of diseases. Existing filtering methods, transform-domain methods, statistical methods and Convolutional Neural Network (CNN) methods main aim to denoise individual sequences of images without considering the relationships between multiple different sequences. They cannot balance the extraction of high-dimensional and low-dimensional features in MR images, and hard to maintain a good balance between preserving image texture details and denoising strength. To overcome these challenges, this work proposes a controllable Multimodal Cross-Global Learnable Attention Network (MMCGLANet) for MR image denoising with Arbitrary Modal Missing. Specifically, Encoder is employed to extract the shallow features of the image which share weight module, and Convolutional Long Short-Term Memory(ConvLSTM) is employed to extract the associated features between different frames within the same modal. Cross Global Learnable Attention Network(CGLANet) is employed to extract and fuse image features between multimodal and within the same modality. In addition, sequence code is employed to label missing modalities, which allows for Arbitrary Modal Missing during model training, validation, and testing. Experimental results demonstrate that our method has achieved good denoising results on different public and real MR image dataset.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.70
自引率
3.50%
发文量
71
审稿时长
26 days
期刊介绍: The purpose of the journal Computerized Medical Imaging and Graphics is to act as a source for the exchange of research results concerning algorithmic advances, development, and application of digital imaging in disease detection, diagnosis, intervention, prevention, precision medicine, and population health. Included in the journal will be articles on novel computerized imaging or visualization techniques, including artificial intelligence and machine learning, augmented reality for surgical planning and guidance, big biomedical data visualization, computer-aided diagnosis, computerized-robotic surgery, image-guided therapy, imaging scanning and reconstruction, mobile and tele-imaging, radiomics, and imaging integration and modeling with other information relevant to digital health. The types of biomedical imaging include: magnetic resonance, computed tomography, ultrasound, nuclear medicine, X-ray, microwave, optical and multi-photon microscopy, video and sensory imaging, and the convergence of biomedical images with other non-imaging datasets.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信