Self-similarity of communities of the ABCD model

IF 0.9 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Jordan Barrett , Bogumił Kamiński , Paweł Prałat , François Théberge
{"title":"Self-similarity of communities of the ABCD model","authors":"Jordan Barrett ,&nbsp;Bogumił Kamiński ,&nbsp;Paweł Prałat ,&nbsp;François Théberge","doi":"10.1016/j.tcs.2024.115012","DOIUrl":null,"url":null,"abstract":"<div><div>The <strong>A</strong>rtificial <strong>B</strong>enchmark for <strong>C</strong>ommunity <strong>D</strong>etection (<strong>ABCD</strong>) graph is a random graph model with community structure and power-law distribution for both degrees and community sizes. The model generates graphs similar to the well-known <strong>LFR</strong> model but it is faster and can be investigated analytically. In this paper, we show that the <strong>ABCD</strong> model exhibits some interesting self-similar behaviour, namely, the degree distribution of ground-truth communities is asymptotically the same as the degree distribution of the whole graph (appropriately normalized based on their sizes). As a result, we can not only estimate the number of edges induced by each community but also the number of self-loops and multi-edges generated during the process. Understanding these quantities is important as (a) rewiring self-loops and multi-edges to keep the graph simple is an expensive part of the algorithm, and (b) every rewiring causes the underlying configuration models to deviate slightly from uniform simple graphs on their corresponding degree sequences.</div></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1026 ","pages":"Article 115012"},"PeriodicalIF":0.9000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Computer Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304397524006297","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The Artificial Benchmark for Community Detection (ABCD) graph is a random graph model with community structure and power-law distribution for both degrees and community sizes. The model generates graphs similar to the well-known LFR model but it is faster and can be investigated analytically. In this paper, we show that the ABCD model exhibits some interesting self-similar behaviour, namely, the degree distribution of ground-truth communities is asymptotically the same as the degree distribution of the whole graph (appropriately normalized based on their sizes). As a result, we can not only estimate the number of edges induced by each community but also the number of self-loops and multi-edges generated during the process. Understanding these quantities is important as (a) rewiring self-loops and multi-edges to keep the graph simple is an expensive part of the algorithm, and (b) every rewiring causes the underlying configuration models to deviate slightly from uniform simple graphs on their corresponding degree sequences.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Theoretical Computer Science
Theoretical Computer Science 工程技术-计算机:理论方法
CiteScore
2.60
自引率
18.20%
发文量
471
审稿时长
12.6 months
期刊介绍: Theoretical Computer Science is mathematical and abstract in spirit, but it derives its motivation from practical and everyday computation. Its aim is to understand the nature of computation and, as a consequence of this understanding, provide more efficient methodologies. All papers introducing or studying mathematical, logic and formal concepts and methods are welcome, provided that their motivation is clearly drawn from the field of computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信