Earthworm optimization algorithm based cascade LSTM-GRU model for android malware detection

Brij B. Gupta , Akshat Gaurav , Varsha Arya , Shavi Bansal , Razaz Waheeb Attar , Ahmed Alhomoud , Konstantinos Psannis
{"title":"Earthworm optimization algorithm based cascade LSTM-GRU model for android malware detection","authors":"Brij B. Gupta ,&nbsp;Akshat Gaurav ,&nbsp;Varsha Arya ,&nbsp;Shavi Bansal ,&nbsp;Razaz Waheeb Attar ,&nbsp;Ahmed Alhomoud ,&nbsp;Konstantinos Psannis","doi":"10.1016/j.csa.2024.100083","DOIUrl":null,"url":null,"abstract":"<div><div>The rise in mobile malware risks brought on by the explosion of Android smartphones required more efficient detection techniques. Inspired by a cascade of Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) networks, optimized using the Earthworm Optimization Algorithm (EOA), this study presents an android malware detection model. The paper used random forest model for feature selection. With a 99% accuracy and the lowest loss values, the proposed model performs better than conventional models including GRU, LSTM, RNN, Logistic Regression, and SVM.. The findings highlight the possibility of proposed method in improving Android malware detection, thereby providing a strong answer in the changing scene of cybersecurity.</div></div>","PeriodicalId":100351,"journal":{"name":"Cyber Security and Applications","volume":"3 ","pages":"Article 100083"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cyber Security and Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772918424000493","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The rise in mobile malware risks brought on by the explosion of Android smartphones required more efficient detection techniques. Inspired by a cascade of Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) networks, optimized using the Earthworm Optimization Algorithm (EOA), this study presents an android malware detection model. The paper used random forest model for feature selection. With a 99% accuracy and the lowest loss values, the proposed model performs better than conventional models including GRU, LSTM, RNN, Logistic Regression, and SVM.. The findings highlight the possibility of proposed method in improving Android malware detection, thereby providing a strong answer in the changing scene of cybersecurity.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信