Projected Langevin Monte Carlo algorithms in non-convex and super-linear setting

IF 3.8 2区 物理与天体物理 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Chenxu Pang , Xiaojie Wang , Yue Wu
{"title":"Projected Langevin Monte Carlo algorithms in non-convex and super-linear setting","authors":"Chenxu Pang ,&nbsp;Xiaojie Wang ,&nbsp;Yue Wu","doi":"10.1016/j.jcp.2025.113754","DOIUrl":null,"url":null,"abstract":"<div><div>It is of significant interest in many applications to sample from a high-dimensional target distribution <em>π</em> with the density <span><math><mi>π</mi><mo>(</mo><mtext>d</mtext><mi>x</mi><mo>)</mo><mo>∝</mo><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo><mi>U</mi><mo>(</mo><mi>x</mi><mo>)</mo></mrow></msup><mo>(</mo><mtext>d</mtext><mi>x</mi><mo>)</mo></math></span>, based on the temporal discretization of the Langevin stochastic differential equations (SDEs). In this paper, we propose an explicit projected Langevin Monte Carlo (PLMC) algorithm with non-convex potential <em>U</em> and super-linear gradient of <em>U</em> and investigate the non-asymptotic analysis of its sampling error in total variation distance. Equipped with time-independent regularity estimates for the associated Kolmogorov equation, we derive the non-asymptotic bounds on the total variation distance between the target distribution of the Langevin SDEs and the law induced by the PLMC scheme with order <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>d</mi></mrow><mrow><mi>max</mi><mo>⁡</mo><mo>{</mo><mn>3</mn><mi>γ</mi><mo>/</mo><mn>2</mn><mo>,</mo><mn>2</mn><mi>γ</mi><mo>−</mo><mn>1</mn><mo>}</mo></mrow></msup><mi>h</mi><mo>|</mo><mi>ln</mi><mo>⁡</mo><mi>h</mi><mo>|</mo><mo>)</mo></math></span>, where <em>d</em> is the dimension of the target distribution and <span><math><mi>γ</mi><mo>≥</mo><mn>1</mn></math></span> characterizes the growth of the gradient of <em>U</em>. In addition, if the gradient of <em>U</em> is globally Lipschitz continuous, an improved convergence order of <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>d</mi></mrow><mrow><mn>3</mn><mo>/</mo><mn>2</mn></mrow></msup><mi>h</mi><mo>)</mo></math></span> for the classical Langevin Monte Carlo (LMC) scheme is derived with a refinement of the proof based on Malliavin calculus techniques. To achieve a given precision <em>ϵ</em>, the smallest number of iterations of the PLMC algorithm is proved to be of order <span><math><mi>O</mi><mo>(</mo><mfrac><mrow><msup><mrow><mi>d</mi></mrow><mrow><mi>max</mi><mo>⁡</mo><mo>{</mo><mn>3</mn><mi>γ</mi><mo>/</mo><mn>2</mn><mo>,</mo><mn>2</mn><mi>γ</mi><mo>−</mo><mn>1</mn><mo>}</mo></mrow></msup></mrow><mrow><mi>ϵ</mi></mrow></mfrac><mo>⋅</mo><mi>ln</mi><mo>⁡</mo><mo>(</mo><mfrac><mrow><mi>d</mi></mrow><mrow><mi>ϵ</mi></mrow></mfrac><mo>)</mo><mo>⋅</mo><mi>ln</mi><mo>⁡</mo><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>ϵ</mi></mrow></mfrac><mo>)</mo><mo>)</mo></math></span>. In particular, the classical Langevin Monte Carlo (LMC) scheme with the non-convex potential <em>U</em> and the globally Lipschitz gradient of <em>U</em> can be guaranteed by order <span><math><mi>O</mi><mo>(</mo><mfrac><mrow><msup><mrow><mi>d</mi></mrow><mrow><mn>3</mn><mo>/</mo><mn>2</mn></mrow></msup></mrow><mrow><mi>ϵ</mi></mrow></mfrac><mo>⋅</mo><mi>ln</mi><mo>⁡</mo><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>ϵ</mi></mrow></mfrac><mo>)</mo><mo>)</mo></math></span>. Numerical experiments are provided to confirm the theoretical findings.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"526 ","pages":"Article 113754"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999125000373","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

It is of significant interest in many applications to sample from a high-dimensional target distribution π with the density π(dx)eU(x)(dx), based on the temporal discretization of the Langevin stochastic differential equations (SDEs). In this paper, we propose an explicit projected Langevin Monte Carlo (PLMC) algorithm with non-convex potential U and super-linear gradient of U and investigate the non-asymptotic analysis of its sampling error in total variation distance. Equipped with time-independent regularity estimates for the associated Kolmogorov equation, we derive the non-asymptotic bounds on the total variation distance between the target distribution of the Langevin SDEs and the law induced by the PLMC scheme with order O(dmax{3γ/2,2γ1}h|lnh|), where d is the dimension of the target distribution and γ1 characterizes the growth of the gradient of U. In addition, if the gradient of U is globally Lipschitz continuous, an improved convergence order of O(d3/2h) for the classical Langevin Monte Carlo (LMC) scheme is derived with a refinement of the proof based on Malliavin calculus techniques. To achieve a given precision ϵ, the smallest number of iterations of the PLMC algorithm is proved to be of order O(dmax{3γ/2,2γ1}ϵln(dϵ)ln(1ϵ)). In particular, the classical Langevin Monte Carlo (LMC) scheme with the non-convex potential U and the globally Lipschitz gradient of U can be guaranteed by order O(d3/2ϵln(1ϵ)). Numerical experiments are provided to confirm the theoretical findings.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Computational Physics
Journal of Computational Physics 物理-计算机:跨学科应用
CiteScore
7.60
自引率
14.60%
发文量
763
审稿时长
5.8 months
期刊介绍: Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries. The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信