Sensitivity of global solar irradiance to transposition models: Assessing risks associated with model discrepancies

Yasser F. Nassar , Hala J. El-Khozondar , Mohamed M. Khaleel , Abdussalam A. Ahmed , Abdulgader H. Alsharif , Monaem Elmnifi , Mark Amoah Nyasapoh
{"title":"Sensitivity of global solar irradiance to transposition models: Assessing risks associated with model discrepancies","authors":"Yasser F. Nassar ,&nbsp;Hala J. El-Khozondar ,&nbsp;Mohamed M. Khaleel ,&nbsp;Abdussalam A. Ahmed ,&nbsp;Abdulgader H. Alsharif ,&nbsp;Monaem Elmnifi ,&nbsp;Mark Amoah Nyasapoh","doi":"10.1016/j.prime.2024.100887","DOIUrl":null,"url":null,"abstract":"<div><div>Estimating solar irradiance is essential for solar energy systems evaluations, energy audit of buildings and. Global and sky-diffuse horizontal irradiances are measured by meteorological stations and satellites. Global horizontal solar irradiance is converted into a global tilted solar irradiance using transposition models (TMs). Despite its importance, many sites—especially isolated rural areas in need of sustainable energy sources—have a conspicuous dearth of information regarding these models. Significant errors can occur when choosing the incorrect TM for feasibility assessments or determining the optimum tilt angles (<em>β</em>) for solar collectors. A novel theory (Risky Index theory) for determining the least risky TM is introduced in this work. To evaluate and validate the proposed theory, eight commonly used TMs from literature, database platforms and software were chosen and tested on 133 sites with various climatic and geographical conditions in the Northern Hemisphere. The study concludes that risk index (RI) is &lt;10 % for all models when the collector is facing south with low tilt angles (<em>β</em>&lt;40°). However, for 40°&lt; <em>β</em>&lt;60° the RI rises above 15 %, and it becomes significant (RI&lt;50 %) as <em>β</em> becomes close to vertical plane. The least risky TM was determined for each site. The results matched satisfactorily with other researchers’ outputs without exceeding 3.5 % of error. A unique TM has been recommended for the entire world corresponding to each interval of <em>β</em>.</div></div>","PeriodicalId":100488,"journal":{"name":"e-Prime - Advances in Electrical Engineering, Electronics and Energy","volume":"11 ","pages":"Article 100887"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"e-Prime - Advances in Electrical Engineering, Electronics and Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772671124004649","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Estimating solar irradiance is essential for solar energy systems evaluations, energy audit of buildings and. Global and sky-diffuse horizontal irradiances are measured by meteorological stations and satellites. Global horizontal solar irradiance is converted into a global tilted solar irradiance using transposition models (TMs). Despite its importance, many sites—especially isolated rural areas in need of sustainable energy sources—have a conspicuous dearth of information regarding these models. Significant errors can occur when choosing the incorrect TM for feasibility assessments or determining the optimum tilt angles (β) for solar collectors. A novel theory (Risky Index theory) for determining the least risky TM is introduced in this work. To evaluate and validate the proposed theory, eight commonly used TMs from literature, database platforms and software were chosen and tested on 133 sites with various climatic and geographical conditions in the Northern Hemisphere. The study concludes that risk index (RI) is <10 % for all models when the collector is facing south with low tilt angles (β<40°). However, for 40°< β<60° the RI rises above 15 %, and it becomes significant (RI<50 %) as β becomes close to vertical plane. The least risky TM was determined for each site. The results matched satisfactorily with other researchers’ outputs without exceeding 3.5 % of error. A unique TM has been recommended for the entire world corresponding to each interval of β.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信