A Review of Federated Learning Applications in Intrusion Detection Systems

IF 4.4 2区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Aitor Belenguer, Jose A. Pascual, Javier Navaridas
{"title":"A Review of Federated Learning Applications in Intrusion Detection Systems","authors":"Aitor Belenguer,&nbsp;Jose A. Pascual,&nbsp;Javier Navaridas","doi":"10.1016/j.comnet.2024.111023","DOIUrl":null,"url":null,"abstract":"<div><div>Intrusion detection systems are evolving into sophisticated systems that perform data analysis while searching for anomalies in their environment. The development of deep learning technologies paved the way to build more complex and effective threat detection models. However, training those models may be computationally infeasible in most Internet of Things devices. Current approaches rely on powerful centralized servers that receive data from all their parties — substantially affecting response times and operational costs due to the huge communication overheads and violating basic privacy constraints. To mitigate these issues, Federated Learning emerged as a promising approach, where different agents collaboratively train a shared model, without exposing training data to others or requiring a compute-intensive centralized infrastructure. This paper focuses on the application of Federated Learning approaches in the field of Intrusion Detection. Both technologies are described in detail and current scientific progress is reviewed and taxonomized. Finally, the paper highlights the limitations present in recent works and proposes some future directions for this technology.</div></div>","PeriodicalId":50637,"journal":{"name":"Computer Networks","volume":"258 ","pages":"Article 111023"},"PeriodicalIF":4.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389128624008557","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Intrusion detection systems are evolving into sophisticated systems that perform data analysis while searching for anomalies in their environment. The development of deep learning technologies paved the way to build more complex and effective threat detection models. However, training those models may be computationally infeasible in most Internet of Things devices. Current approaches rely on powerful centralized servers that receive data from all their parties — substantially affecting response times and operational costs due to the huge communication overheads and violating basic privacy constraints. To mitigate these issues, Federated Learning emerged as a promising approach, where different agents collaboratively train a shared model, without exposing training data to others or requiring a compute-intensive centralized infrastructure. This paper focuses on the application of Federated Learning approaches in the field of Intrusion Detection. Both technologies are described in detail and current scientific progress is reviewed and taxonomized. Finally, the paper highlights the limitations present in recent works and proposes some future directions for this technology.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computer Networks
Computer Networks 工程技术-电信学
CiteScore
10.80
自引率
3.60%
发文量
434
审稿时长
8.6 months
期刊介绍: Computer Networks is an international, archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in the computer communications networking area. The audience includes researchers, managers and operators of networks as well as designers and implementors. The Editorial Board will consider any material for publication that is of interest to those groups.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信