Federated deep reinforcement learning-based cost-efficient proactive video caching in energy-constrained mobile edge networks

IF 4.4 2区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Zhen Qian, Guanghui Li, Tao Qi, Chenglong Dai
{"title":"Federated deep reinforcement learning-based cost-efficient proactive video caching in energy-constrained mobile edge networks","authors":"Zhen Qian,&nbsp;Guanghui Li,&nbsp;Tao Qi,&nbsp;Chenglong Dai","doi":"10.1016/j.comnet.2025.111062","DOIUrl":null,"url":null,"abstract":"<div><div>As the 5G technology and mobile smart devices evolve rapidly, the federated learning-based edge video caching has become a key technology to mitigate the explosive growth of traffic. However, due to energy-limited edge mobile devices, it is unrealistic to keep the maximum computational power of all smart devices in each round of communication in federated learning. Moreover, users’ implicit feedback behavior poses challenges to predicting popular content. To tackle these challenges, we propose a Federated deep Reinforcement learning-based Proactive Video Caching scheme (FRPVC), which not only improves the cache hit rate while addressing user privacy and security, but also minimizes the total system cost in energy-constrained mobile edge computing networks. FRPVC utilizes the user’s local implicit feedback data for training denoised auto-encoder models based on federated learning. We further formulate the user computational resource allocation problem as a Markov Decision Process (MDP) to minimize the expected long-term system cost and propose a DDQN-based resource allocation method to solve the optimal resource allocation policy, which can efficiently allocate the computational resources of each federated training client to minimize the total cost of the federated learning process. By validating under three real datasets, the experiments show that the proposed scheme outperforms the baseline algorithm in terms of cache hit rate and is close to the optimal algorithm. In addition, the experiments also show that FRPVC is able to effectively reduce the system cost under local resource constraints.</div></div>","PeriodicalId":50637,"journal":{"name":"Computer Networks","volume":"258 ","pages":"Article 111062"},"PeriodicalIF":4.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389128625000301","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

As the 5G technology and mobile smart devices evolve rapidly, the federated learning-based edge video caching has become a key technology to mitigate the explosive growth of traffic. However, due to energy-limited edge mobile devices, it is unrealistic to keep the maximum computational power of all smart devices in each round of communication in federated learning. Moreover, users’ implicit feedback behavior poses challenges to predicting popular content. To tackle these challenges, we propose a Federated deep Reinforcement learning-based Proactive Video Caching scheme (FRPVC), which not only improves the cache hit rate while addressing user privacy and security, but also minimizes the total system cost in energy-constrained mobile edge computing networks. FRPVC utilizes the user’s local implicit feedback data for training denoised auto-encoder models based on federated learning. We further formulate the user computational resource allocation problem as a Markov Decision Process (MDP) to minimize the expected long-term system cost and propose a DDQN-based resource allocation method to solve the optimal resource allocation policy, which can efficiently allocate the computational resources of each federated training client to minimize the total cost of the federated learning process. By validating under three real datasets, the experiments show that the proposed scheme outperforms the baseline algorithm in terms of cache hit rate and is close to the optimal algorithm. In addition, the experiments also show that FRPVC is able to effectively reduce the system cost under local resource constraints.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computer Networks
Computer Networks 工程技术-电信学
CiteScore
10.80
自引率
3.60%
发文量
434
审稿时长
8.6 months
期刊介绍: Computer Networks is an international, archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in the computer communications networking area. The audience includes researchers, managers and operators of networks as well as designers and implementors. The Editorial Board will consider any material for publication that is of interest to those groups.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信