Xianghui Bu , Yuqiong Li , Na Li , Liping Ying , Zheng Yuan , Zongfang Han , Xiuli Xu
{"title":"Enhancing discrete element model accuracy for lunar soil: Calibration and validation of mesoscopic parameters","authors":"Xianghui Bu , Yuqiong Li , Na Li , Liping Ying , Zheng Yuan , Zongfang Han , Xiuli Xu","doi":"10.1016/j.pss.2024.106024","DOIUrl":null,"url":null,"abstract":"<div><div>To enhance the precision of the discrete element model for lunar soil-tool simulation work, this paper introduces a novel discrete element model of lunar soil incorporating particle shape and the van der Waals forces between particles. The effect of mesoscopic parameters on peak stress and failure point are systematically calibrated in the model by triaxial compression stress-strain curves. The results show that six <em>meso</em>-parameters have significant impact on the mechanical response of the model, including effective modulus, rolling friction coefficient, normal-to-shear stiffness ratio, damping coefficient, maximum attractive force and attraction range. The model accurately simulates complex mechanical behavior in both loose, dense lunar soils and soil-tool interaction. This study lays a foundation for future lunar soil-anchor interaction simulation and the interpretation of lunar soil mechanical parameters.</div></div>","PeriodicalId":20054,"journal":{"name":"Planetary and Space Science","volume":"255 ","pages":"Article 106024"},"PeriodicalIF":1.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Planetary and Space Science","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032063324001880","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
To enhance the precision of the discrete element model for lunar soil-tool simulation work, this paper introduces a novel discrete element model of lunar soil incorporating particle shape and the van der Waals forces between particles. The effect of mesoscopic parameters on peak stress and failure point are systematically calibrated in the model by triaxial compression stress-strain curves. The results show that six meso-parameters have significant impact on the mechanical response of the model, including effective modulus, rolling friction coefficient, normal-to-shear stiffness ratio, damping coefficient, maximum attractive force and attraction range. The model accurately simulates complex mechanical behavior in both loose, dense lunar soils and soil-tool interaction. This study lays a foundation for future lunar soil-anchor interaction simulation and the interpretation of lunar soil mechanical parameters.
期刊介绍:
Planetary and Space Science publishes original articles as well as short communications (letters). Ground-based and space-borne instrumentation and laboratory simulation of solar system processes are included. The following fields of planetary and solar system research are covered:
• Celestial mechanics, including dynamical evolution of the solar system, gravitational captures and resonances, relativistic effects, tracking and dynamics
• Cosmochemistry and origin, including all aspects of the formation and initial physical and chemical evolution of the solar system
• Terrestrial planets and satellites, including the physics of the interiors, geology and morphology of the surfaces, tectonics, mineralogy and dating
• Outer planets and satellites, including formation and evolution, remote sensing at all wavelengths and in situ measurements
• Planetary atmospheres, including formation and evolution, circulation and meteorology, boundary layers, remote sensing and laboratory simulation
• Planetary magnetospheres and ionospheres, including origin of magnetic fields, magnetospheric plasma and radiation belts, and their interaction with the sun, the solar wind and satellites
• Small bodies, dust and rings, including asteroids, comets and zodiacal light and their interaction with the solar radiation and the solar wind
• Exobiology, including origin of life, detection of planetary ecosystems and pre-biological phenomena in the solar system and laboratory simulations
• Extrasolar systems, including the detection and/or the detectability of exoplanets and planetary systems, their formation and evolution, the physical and chemical properties of the exoplanets
• History of planetary and space research