DRL-based latency-energy offloading optimization strategy in wireless VR networks with edge computing

IF 4.4 2区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Jieru Wang , Hui Xia , Lijuan Xu , Rui Zhang , Kunkun Jia
{"title":"DRL-based latency-energy offloading optimization strategy in wireless VR networks with edge computing","authors":"Jieru Wang ,&nbsp;Hui Xia ,&nbsp;Lijuan Xu ,&nbsp;Rui Zhang ,&nbsp;Kunkun Jia","doi":"10.1016/j.comnet.2025.111034","DOIUrl":null,"url":null,"abstract":"<div><div>The increase in data paths and the resulting latency growth in Wireless Virtual Reality (WVR) can significantly affect user experience. Mobile Edge Computing emerges as an effective solution to address these issues. However, offloading methods based on Deep Reinforcement Learning (DRL) face hurdles like limited environmental exploration and prolonged user waiting time. To address the mentioned challenges in WVR edge computing, where computational offloading involves multiple devices and edge servers, we aim to minimize system latency and reduce energy consumption. Therefore, we introduce the Task Prediction and Multi-objective Optimization Algorithm (TPMOA). First, we reduce the time users wait for rendering results by predicting their viewpoints. Next, we apply an entropy-innovated DRL algorithm to the latent space for computation offloading. Through representation learning, we establish a reward function that includes latent objectives and optimizes the experience replay buffer. This approach allows us to train and select the optimal offloading strategy, thereby reducing rendering latency and system energy consumption. Our experiments show that our approach effectively tackles the challenges of limited environmental exploration ability and extended user waiting time. Specifically, our method outperforms the RNN-based AC method significantly, reducing latency by 11.39%.</div></div>","PeriodicalId":50637,"journal":{"name":"Computer Networks","volume":"258 ","pages":"Article 111034"},"PeriodicalIF":4.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389128625000027","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

The increase in data paths and the resulting latency growth in Wireless Virtual Reality (WVR) can significantly affect user experience. Mobile Edge Computing emerges as an effective solution to address these issues. However, offloading methods based on Deep Reinforcement Learning (DRL) face hurdles like limited environmental exploration and prolonged user waiting time. To address the mentioned challenges in WVR edge computing, where computational offloading involves multiple devices and edge servers, we aim to minimize system latency and reduce energy consumption. Therefore, we introduce the Task Prediction and Multi-objective Optimization Algorithm (TPMOA). First, we reduce the time users wait for rendering results by predicting their viewpoints. Next, we apply an entropy-innovated DRL algorithm to the latent space for computation offloading. Through representation learning, we establish a reward function that includes latent objectives and optimizes the experience replay buffer. This approach allows us to train and select the optimal offloading strategy, thereby reducing rendering latency and system energy consumption. Our experiments show that our approach effectively tackles the challenges of limited environmental exploration ability and extended user waiting time. Specifically, our method outperforms the RNN-based AC method significantly, reducing latency by 11.39%.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computer Networks
Computer Networks 工程技术-电信学
CiteScore
10.80
自引率
3.60%
发文量
434
审稿时长
8.6 months
期刊介绍: Computer Networks is an international, archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in the computer communications networking area. The audience includes researchers, managers and operators of networks as well as designers and implementors. The Editorial Board will consider any material for publication that is of interest to those groups.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信