{"title":"Local second order regularity of solutions to elliptic Orlicz–Laplace equation","authors":"Arttu Karppinen , Saara Sarsa","doi":"10.1016/j.na.2024.113737","DOIUrl":null,"url":null,"abstract":"<div><div>We consider Orlicz–Laplace equation <span><math><mrow><mo>−</mo><mo>div</mo><mspace></mspace><mrow><mo>(</mo><mfrac><mrow><msup><mrow><mi>φ</mi></mrow><mrow><mo>′</mo></mrow></msup><mrow><mo>(</mo><mrow><mo>|</mo><mo>∇</mo><mi>u</mi><mo>|</mo></mrow><mo>)</mo></mrow></mrow><mrow><mrow><mo>|</mo><mo>∇</mo><mi>u</mi><mo>|</mo></mrow></mrow></mfrac><mo>∇</mo><mi>u</mi><mo>)</mo></mrow><mo>=</mo><mi>f</mi></mrow></math></span> where <span><math><mi>φ</mi></math></span> is an Orlicz function and either <span><math><mrow><mi>f</mi><mo>=</mo><mn>0</mn></mrow></math></span> or <span><math><mrow><mi>f</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msup></mrow></math></span>. We prove local second order regularity results for the weak solutions <span><math><mi>u</mi></math></span> of the Orlicz–Laplace equation. More precisely, we show that if <span><math><mi>ψ</mi></math></span> is another Orlicz function that is close to <span><math><mi>φ</mi></math></span> in a suitable sense, then <span><math><mrow><mfrac><mrow><msup><mrow><mi>ψ</mi></mrow><mrow><mo>′</mo></mrow></msup><mrow><mo>(</mo><mrow><mo>|</mo><mo>∇</mo><mi>u</mi><mo>|</mo></mrow><mo>)</mo></mrow></mrow><mrow><mrow><mo>|</mo><mo>∇</mo><mi>u</mi><mo>|</mo></mrow></mrow></mfrac><mo>∇</mo><mi>u</mi><mo>∈</mo><msubsup><mrow><mi>W</mi></mrow><mrow><mtext>loc</mtext></mrow><mrow><mn>1</mn><mo>,</mo><mn>2</mn></mrow></msubsup></mrow></math></span>. This work contributes to the building up of quantitative second order Sobolev regularity for solutions of nonlinear equations.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"253 ","pages":"Article 113737"},"PeriodicalIF":1.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X24002566","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We consider Orlicz–Laplace equation where is an Orlicz function and either or . We prove local second order regularity results for the weak solutions of the Orlicz–Laplace equation. More precisely, we show that if is another Orlicz function that is close to in a suitable sense, then . This work contributes to the building up of quantitative second order Sobolev regularity for solutions of nonlinear equations.
期刊介绍:
Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.