Rapid subsidence as a driver of phosphate deposition in the later Ordovician: Case study from the Alabama Appalachians

IF 2.7 2区 地球科学 Q1 GEOLOGY
John T. Haynes , Rafael A. Villanueva , Richard M. Robinet , Stephen A. Leslie , Achim D. Herrmann
{"title":"Rapid subsidence as a driver of phosphate deposition in the later Ordovician: Case study from the Alabama Appalachians","authors":"John T. Haynes ,&nbsp;Rafael A. Villanueva ,&nbsp;Richard M. Robinet ,&nbsp;Stephen A. Leslie ,&nbsp;Achim D. Herrmann","doi":"10.1016/j.sedgeo.2024.106783","DOIUrl":null,"url":null,"abstract":"<div><div>An increase in accumulation of phosphate-enriched sediment occurred in several areas of Earth's oceans during the later Ordovician, suggesting that some fundamental change (s) in seawater and/or pore water chemistry were taking place, either syndepositionally or during early diagenesis. One hypothesis is that widespread cooling of the water column led to this increase, but another is that the increase could have been forced primarily by changes in seawater chemistry that accompanied an influx of siliciclastic sediments associated with tectonically driven subsidence. Here, we report on findings from study of the upper ~30 m of the &gt;200 m of Middle and Late Ordovician strata exposed near Tidwell Hollow, Blount County, Alabama, and what the results suggest about the competing hypotheses. This Ordovician sequence, deposited along the southeastern margin of Laurentia during the initial (Blountian) stage of the Taconic Orogeny, records the transition from a restricted peritidal carbonate shelf environment (the “Black River lithofacies”) into a more normal marine carbonate environment (the “Trenton lithofacies”). In particular, the younger carbonate strata are notable for their measurably higher amounts of secondary phosphate minerals. This stratigraphic interval is also well-constrained chronostratigraphically by the presence of the Deicke and Millbrig K-bentonite beds (altered volcanic tephra layers), thus it is ideal for a focused geochemical, petrographic, and stratigraphic investigation of the increased phosphate content of a specific Upper Ordovician sequence. Analyses of bulk rock samples and of extracted collophane grains (via x-ray fluorescence, XRF, and in-situ laser ablation inductively coupled plasma mass spectrometer, ICPMS) suggest that phosphogenesis in these strata was episodic rather than slow and steady, with a depositional pattern of abrupt increases followed by abrupt declines. Observed trace element changes in the 12 m to 18 m sample interval include the occurrence of elevated Th/U ratios (maximum of 5.7) accompanied by Y/Ho ratios that range from 27 (base) to 51 (top). We attribute these changes to increasing silicate influx into the basin and an accompanying increase in available Fe, which would preferentially scavenge MREEs and then release them to the pore waters leading to MREE enrichment, which we also observe in this interval. In a rapidly subsiding basin, MREE enrichment could have resulted from initial restriction of bottom water circulation followed by gradually more open marine conditions. Some allochems and textures that are more characteristic of the older Black River lithofacies than the younger Trenton lithofacies (e.g. framework grains of calcareous green algae and Type 1 and Type 2 oncoids, fenestral lime mudstones, and associated small framestones of <em>Tetradium</em> sp. buildups) persist in relative abundance upsection into the ~10 m interval of strata above the Millbrig K-bentonite Bed, and this persistence supports the hypothesis that the Trenton transgression was not initially accompanied by widespread cooling of the Laurentian epicontinental sea. Instead, we propose that variable weathering rates, turbidity, and nutrient supply accompanied by relatively rapid subsidence could have governed the observed variability in phosphate deposition and elemental abundances in these sediments, and that this subsidence of the Laurentian margin could have been the driver of an uptick in phosphate deposition during the later Ordovician here, and perhaps at other locations as well where subsidence was occurring, given that increased phosphate deposition is a globally recognized and globally significant change in many Upper Ordovician sequences beyond eastern Laurentia.</div></div>","PeriodicalId":21575,"journal":{"name":"Sedimentary Geology","volume":"476 ","pages":"Article 106783"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sedimentary Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0037073824002069","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

An increase in accumulation of phosphate-enriched sediment occurred in several areas of Earth's oceans during the later Ordovician, suggesting that some fundamental change (s) in seawater and/or pore water chemistry were taking place, either syndepositionally or during early diagenesis. One hypothesis is that widespread cooling of the water column led to this increase, but another is that the increase could have been forced primarily by changes in seawater chemistry that accompanied an influx of siliciclastic sediments associated with tectonically driven subsidence. Here, we report on findings from study of the upper ~30 m of the >200 m of Middle and Late Ordovician strata exposed near Tidwell Hollow, Blount County, Alabama, and what the results suggest about the competing hypotheses. This Ordovician sequence, deposited along the southeastern margin of Laurentia during the initial (Blountian) stage of the Taconic Orogeny, records the transition from a restricted peritidal carbonate shelf environment (the “Black River lithofacies”) into a more normal marine carbonate environment (the “Trenton lithofacies”). In particular, the younger carbonate strata are notable for their measurably higher amounts of secondary phosphate minerals. This stratigraphic interval is also well-constrained chronostratigraphically by the presence of the Deicke and Millbrig K-bentonite beds (altered volcanic tephra layers), thus it is ideal for a focused geochemical, petrographic, and stratigraphic investigation of the increased phosphate content of a specific Upper Ordovician sequence. Analyses of bulk rock samples and of extracted collophane grains (via x-ray fluorescence, XRF, and in-situ laser ablation inductively coupled plasma mass spectrometer, ICPMS) suggest that phosphogenesis in these strata was episodic rather than slow and steady, with a depositional pattern of abrupt increases followed by abrupt declines. Observed trace element changes in the 12 m to 18 m sample interval include the occurrence of elevated Th/U ratios (maximum of 5.7) accompanied by Y/Ho ratios that range from 27 (base) to 51 (top). We attribute these changes to increasing silicate influx into the basin and an accompanying increase in available Fe, which would preferentially scavenge MREEs and then release them to the pore waters leading to MREE enrichment, which we also observe in this interval. In a rapidly subsiding basin, MREE enrichment could have resulted from initial restriction of bottom water circulation followed by gradually more open marine conditions. Some allochems and textures that are more characteristic of the older Black River lithofacies than the younger Trenton lithofacies (e.g. framework grains of calcareous green algae and Type 1 and Type 2 oncoids, fenestral lime mudstones, and associated small framestones of Tetradium sp. buildups) persist in relative abundance upsection into the ~10 m interval of strata above the Millbrig K-bentonite Bed, and this persistence supports the hypothesis that the Trenton transgression was not initially accompanied by widespread cooling of the Laurentian epicontinental sea. Instead, we propose that variable weathering rates, turbidity, and nutrient supply accompanied by relatively rapid subsidence could have governed the observed variability in phosphate deposition and elemental abundances in these sediments, and that this subsidence of the Laurentian margin could have been the driver of an uptick in phosphate deposition during the later Ordovician here, and perhaps at other locations as well where subsidence was occurring, given that increased phosphate deposition is a globally recognized and globally significant change in many Upper Ordovician sequences beyond eastern Laurentia.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Sedimentary Geology
Sedimentary Geology 地学-地质学
CiteScore
5.10
自引率
7.10%
发文量
133
审稿时长
32 days
期刊介绍: Sedimentary Geology is a journal that rapidly publishes high quality, original research and review papers that cover all aspects of sediments and sedimentary rocks at all spatial and temporal scales. Submitted papers must make a significant contribution to the field of study and must place the research in a broad context, so that it is of interest to the diverse, international readership of the journal. Papers that are largely descriptive in nature, of limited scope or local geographical significance, or based on limited data will not be considered for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信