COREC: Concurrent non-blocking single-queue receive driver for low latency networking

IF 4.4 2区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Marco Faltelli , Giacomo Belocchi , Francesco Quaglia , Giuseppe Bianchi
{"title":"COREC: Concurrent non-blocking single-queue receive driver for low latency networking","authors":"Marco Faltelli ,&nbsp;Giacomo Belocchi ,&nbsp;Francesco Quaglia ,&nbsp;Giuseppe Bianchi","doi":"10.1016/j.comnet.2024.110982","DOIUrl":null,"url":null,"abstract":"<div><div>Existing network stacks tackle performance and scalability aspects by relying on multiple receive queues. However, at software level, each queue is processed by a single thread, which prevents simultaneous work on the same queue and limits performance in terms of tail latency. To overcome this limitation, we introduce COREC, the first software implementation of a concurrent non-blocking single-queue receive driver. By sharing a single queue among multiple threads, workload distribution is improved, leading to a work-conserving policy for network stacks. On the technical side, instead of relying on traditional critical sections — which would sequentialize the operations by threads — COREC coordinates the threads that concurrently access the same receive queue in non-blocking manner via atomic machine instructions from the Read-Modify-Write (RMW) class. These instructions allow threads to access and update memory locations atomically, based on specific conditions, such as the matching of a target value selected by the thread. Also, they enable making any update globally visible in the memory hierarchy, bypassing interference on memory consistency caused by the CPU store buffers. Extensive evaluation results demonstrate that the possible additional reordering, which our approach may occasionally cause, is non-critical and has minimal impact on performance, even in the worst-case scenario of a single large TCP flow, with performance impairments accounting to at most 2-3 percent. Conversely, substantial latency gains are achieved when handling UDP traffic, real-world traffic mix, and multiple shorter TCP flows.</div></div>","PeriodicalId":50637,"journal":{"name":"Computer Networks","volume":"258 ","pages":"Article 110982"},"PeriodicalIF":4.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389128624008144","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Existing network stacks tackle performance and scalability aspects by relying on multiple receive queues. However, at software level, each queue is processed by a single thread, which prevents simultaneous work on the same queue and limits performance in terms of tail latency. To overcome this limitation, we introduce COREC, the first software implementation of a concurrent non-blocking single-queue receive driver. By sharing a single queue among multiple threads, workload distribution is improved, leading to a work-conserving policy for network stacks. On the technical side, instead of relying on traditional critical sections — which would sequentialize the operations by threads — COREC coordinates the threads that concurrently access the same receive queue in non-blocking manner via atomic machine instructions from the Read-Modify-Write (RMW) class. These instructions allow threads to access and update memory locations atomically, based on specific conditions, such as the matching of a target value selected by the thread. Also, they enable making any update globally visible in the memory hierarchy, bypassing interference on memory consistency caused by the CPU store buffers. Extensive evaluation results demonstrate that the possible additional reordering, which our approach may occasionally cause, is non-critical and has minimal impact on performance, even in the worst-case scenario of a single large TCP flow, with performance impairments accounting to at most 2-3 percent. Conversely, substantial latency gains are achieved when handling UDP traffic, real-world traffic mix, and multiple shorter TCP flows.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computer Networks
Computer Networks 工程技术-电信学
CiteScore
10.80
自引率
3.60%
发文量
434
审稿时长
8.6 months
期刊介绍: Computer Networks is an international, archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in the computer communications networking area. The audience includes researchers, managers and operators of networks as well as designers and implementors. The Editorial Board will consider any material for publication that is of interest to those groups.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信