{"title":"Toward sustainable propylene: A comparison of current and future production pathways","authors":"Parsa Shirzad, Ivan Kantor","doi":"10.1016/j.rset.2024.100099","DOIUrl":null,"url":null,"abstract":"<div><div>Propylene, a fundamental chemical, has witnessed a significant surge in demand in recent decades, establishing itself as the second most primary intermediate compound after ethylene. Propylene manufacturing currently depends on non-renewable resources, specifically naphtha or propane from fossil sources. The conventional methods are economically feasible and mature; however, they emit greenhouse gases and consume non-renewable resources. Therefore, it is necessary to transition to more sustainable production methods. This review aims to provide and analyze many possible routes for the production of propylene using sustainable resources. The categorization of these pathways is determined by the raw material employed for the manufacture of propylene. Out of the several paths considered, bio-propane dehydrogenation stands out as a viable option for producing propylene in the future. Furthermore, this study examines and reports on the analysis of catalyst selection, the design of operating conditions, and the yield and selectivity of propylene in each pathway. Zeolite-based catalysts, particularly ZSM-5, exhibit remarkable selectivity in propylene synthesis across several processes. To fully comprehend the sustainability and feasibility of these paths, this research also reviews environmental impact and techno-economic metrics of several established propylene production methods.</div></div>","PeriodicalId":101071,"journal":{"name":"Renewable and Sustainable Energy Transition","volume":"7 ","pages":"Article 100099"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable and Sustainable Energy Transition","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667095X24000242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Propylene, a fundamental chemical, has witnessed a significant surge in demand in recent decades, establishing itself as the second most primary intermediate compound after ethylene. Propylene manufacturing currently depends on non-renewable resources, specifically naphtha or propane from fossil sources. The conventional methods are economically feasible and mature; however, they emit greenhouse gases and consume non-renewable resources. Therefore, it is necessary to transition to more sustainable production methods. This review aims to provide and analyze many possible routes for the production of propylene using sustainable resources. The categorization of these pathways is determined by the raw material employed for the manufacture of propylene. Out of the several paths considered, bio-propane dehydrogenation stands out as a viable option for producing propylene in the future. Furthermore, this study examines and reports on the analysis of catalyst selection, the design of operating conditions, and the yield and selectivity of propylene in each pathway. Zeolite-based catalysts, particularly ZSM-5, exhibit remarkable selectivity in propylene synthesis across several processes. To fully comprehend the sustainability and feasibility of these paths, this research also reviews environmental impact and techno-economic metrics of several established propylene production methods.