Fourier integral operators on Hardy spaces with amplitudes in forbidden Hörmander classes

IF 1.3 2区 数学 Q1 MATHEMATICS
Xiaofeng Ye , Chunjie Zhang , Xiangrong Zhu
{"title":"Fourier integral operators on Hardy spaces with amplitudes in forbidden Hörmander classes","authors":"Xiaofeng Ye ,&nbsp;Chunjie Zhang ,&nbsp;Xiangrong Zhu","doi":"10.1016/j.na.2024.113741","DOIUrl":null,"url":null,"abstract":"<div><div>In this note, we consider a Fourier integral operator defined by <span><span><span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>ϕ</mi><mo>,</mo><mi>a</mi></mrow></msub><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mo>∫</mo></mrow><mrow><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub><msup><mrow><mi>e</mi></mrow><mrow><mi>i</mi><mi>ϕ</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>ξ</mi><mo>)</mo></mrow></mrow></msup><mi>a</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>ξ</mi><mo>)</mo></mrow><mover><mrow><mi>f</mi></mrow><mrow><mo>̂</mo></mrow></mover><mrow><mo>(</mo><mi>ξ</mi><mo>)</mo></mrow><mi>d</mi><mi>ξ</mi><mo>,</mo></mrow></math></span></span></span>where <span><math><mi>a</mi></math></span> is the amplitude, and <span><math><mi>ϕ</mi></math></span> is the phase.</div><div>Let <span><math><mrow><mn>0</mn><mo>≤</mo><mi>ρ</mi><mo>≤</mo><mn>1</mn><mo>,</mo><mi>n</mi><mo>≥</mo><mn>2</mn></mrow></math></span> or <span><math><mrow><mn>0</mn><mo>≤</mo><mi>ρ</mi><mo>&lt;</mo><mn>1</mn><mo>,</mo><mi>n</mi><mo>=</mo><mn>1</mn></mrow></math></span> and <span><span><span><math><mrow><msub><mrow><mi>m</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>=</mo><mfrac><mrow><mi>ρ</mi><mo>−</mo><mi>n</mi></mrow><mrow><mi>p</mi></mrow></mfrac><mo>+</mo><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mo>min</mo><mrow><mo>{</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mi>ρ</mi><mo>}</mo></mrow><mo>.</mo></mrow></math></span></span></span>If <span><math><mi>a</mi></math></span> belongs to the forbidden Hörmander class <span><math><msubsup><mrow><mi>S</mi></mrow><mrow><mi>ρ</mi><mo>,</mo><mn>1</mn></mrow><mrow><msub><mrow><mi>m</mi></mrow><mrow><mi>p</mi></mrow></msub></mrow></msubsup></math></span> and <span><math><mrow><mi>ϕ</mi><mo>∈</mo><msup><mrow><mi>Φ</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span> satisfies the strong non-degeneracy condition, then for any <span><math><mrow><mfrac><mrow><mi>n</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfrac><mo>&lt;</mo><mi>p</mi><mo>≤</mo><mn>1</mn></mrow></math></span>, we can show that the Fourier integral operator <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>ϕ</mi><mo>,</mo><mi>a</mi></mrow></msub></math></span> is bounded from the local Hardy space <span><math><msup><mrow><mi>h</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> to <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>. Furthermore, if <span><math><mi>a</mi></math></span> has compact support in variable <span><math><mi>x</mi></math></span>, then we can extend this result to <span><math><mrow><mn>0</mn><mo>&lt;</mo><mi>p</mi><mo>≤</mo><mn>1</mn></mrow></math></span>. As <span><math><mrow><msubsup><mrow><mi>S</mi></mrow><mrow><mi>ρ</mi><mo>,</mo><mi>δ</mi></mrow><mrow><msub><mrow><mi>m</mi></mrow><mrow><mi>p</mi></mrow></msub></mrow></msubsup><mo>⊂</mo><msubsup><mrow><mi>S</mi></mrow><mrow><mi>ρ</mi><mo>,</mo><mn>1</mn></mrow><mrow><msub><mrow><mi>m</mi></mrow><mrow><mi>p</mi></mrow></msub></mrow></msubsup></mrow></math></span> for any <span><math><mrow><mn>0</mn><mo>≤</mo><mi>δ</mi><mo>≤</mo><mn>1</mn></mrow></math></span>, our result supplements and improves upon recent theorems proved by Staubach and his collaborators for <span><math><mrow><mi>a</mi><mo>∈</mo><msubsup><mrow><mi>S</mi></mrow><mrow><mi>ρ</mi><mo>,</mo><mi>δ</mi></mrow><mrow><mi>m</mi></mrow></msubsup></mrow></math></span> when <span><math><mi>δ</mi></math></span> is close to 1.</div><div>As an important special case, when <span><math><mrow><mi>n</mi><mo>≥</mo><mn>2</mn></mrow></math></span>, we show that <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>ϕ</mi><mo>,</mo><mi>a</mi></mrow></msub></math></span> is bounded from <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> to <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> if <span><math><mrow><mi>a</mi><mo>∈</mo><msubsup><mrow><mi>S</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow><mrow><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>n</mi><mo>)</mo></mrow><mo>/</mo><mn>2</mn></mrow></msubsup></mrow></math></span> which is a generalization of the well-known Seeger–Sogge–Stein theorem for <span><math><mrow><mi>a</mi><mo>∈</mo><msubsup><mrow><mi>S</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>0</mn></mrow><mrow><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>n</mi><mo>)</mo></mrow><mo>/</mo><mn>2</mn></mrow></msubsup></mrow></math></span>. This result is false when <span><math><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow></math></span> and <span><math><mrow><mi>a</mi><mo>∈</mo><msubsup><mrow><mi>S</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow><mrow><mn>0</mn></mrow></msubsup></mrow></math></span>.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"253 ","pages":"Article 113741"},"PeriodicalIF":1.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X24002608","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this note, we consider a Fourier integral operator defined by Tϕ,af(x)=Rneiϕ(x,ξ)a(x,ξ)f̂(ξ)dξ,where a is the amplitude, and ϕ is the phase.
Let 0ρ1,n2 or 0ρ<1,n=1 and mp=ρnp+(n1)min{12,ρ}.If a belongs to the forbidden Hörmander class Sρ,1mp and ϕΦ2 satisfies the strong non-degeneracy condition, then for any nn+1<p1, we can show that the Fourier integral operator Tϕ,a is bounded from the local Hardy space hp to Lp. Furthermore, if a has compact support in variable x, then we can extend this result to 0<p1. As Sρ,δmpSρ,1mp for any 0δ1, our result supplements and improves upon recent theorems proved by Staubach and his collaborators for aSρ,δm when δ is close to 1.
As an important special case, when n2, we show that Tϕ,a is bounded from H1 to L1 if aS1,1(1n)/2 which is a generalization of the well-known Seeger–Sogge–Stein theorem for aS1,0(1n)/2. This result is false when n=1 and aS1,10.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
265
审稿时长
60 days
期刊介绍: Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信