Divided opposition strategy in particle swarm framework for constrained optimization problem

Q3 Mathematics
Sarika Jain , Rekha Rani , Pradeep Jangir , Seyed Jalaleddin Mousavirad , Ali Wagdy Mohamed
{"title":"Divided opposition strategy in particle swarm framework for constrained optimization problem","authors":"Sarika Jain ,&nbsp;Rekha Rani ,&nbsp;Pradeep Jangir ,&nbsp;Seyed Jalaleddin Mousavirad ,&nbsp;Ali Wagdy Mohamed","doi":"10.1016/j.rico.2024.100508","DOIUrl":null,"url":null,"abstract":"<div><div>In nature inspired algorithms, population initialization techniques play an important role to find an optimal solution. In this study, we proposed a novel population initialization technique Divided opposition-based learning Particle Swarm Optimization (D-PSO). This technique is inspired by Opposition Based Learning (OBL). D-PSO is a technique in which elements of initial population are uniformly cover the search space so the possibility of obtaining the optimal solution is highest. To validate the results D-PSO is tested on 16 benchmark functions for dimensions 10 and 30 and 12 CEC22 functions along with standard PSO, OBL-PSO, I-PSO. In standard PSO elements of initial population is randomly generated and in OBL-PSO elements of initial population are generated using OBL technique. I-PSO generate initial population elements using improved OBL technique. D-PSO gives better outcomes for all benchmark functions for dimension 10, 30 and 10 CEC22 function out of 12 as compared to other initialization techniques. To measure the significance of results a statistical analysis is also done in this study. Complexity analysis and convergence analysis is also measured for both set of benchmark functions. The convergence behavior of D-PSO for all benchmark function for dimension 10, 30 and 10 CEC22 function is best as compared to other initialization technique.</div></div>","PeriodicalId":34733,"journal":{"name":"Results in Control and Optimization","volume":"18 ","pages":"Article 100508"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Control and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666720724001371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

In nature inspired algorithms, population initialization techniques play an important role to find an optimal solution. In this study, we proposed a novel population initialization technique Divided opposition-based learning Particle Swarm Optimization (D-PSO). This technique is inspired by Opposition Based Learning (OBL). D-PSO is a technique in which elements of initial population are uniformly cover the search space so the possibility of obtaining the optimal solution is highest. To validate the results D-PSO is tested on 16 benchmark functions for dimensions 10 and 30 and 12 CEC22 functions along with standard PSO, OBL-PSO, I-PSO. In standard PSO elements of initial population is randomly generated and in OBL-PSO elements of initial population are generated using OBL technique. I-PSO generate initial population elements using improved OBL technique. D-PSO gives better outcomes for all benchmark functions for dimension 10, 30 and 10 CEC22 function out of 12 as compared to other initialization techniques. To measure the significance of results a statistical analysis is also done in this study. Complexity analysis and convergence analysis is also measured for both set of benchmark functions. The convergence behavior of D-PSO for all benchmark function for dimension 10, 30 and 10 CEC22 function is best as compared to other initialization technique.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Control and Optimization
Results in Control and Optimization Mathematics-Control and Optimization
CiteScore
3.00
自引率
0.00%
发文量
51
审稿时长
91 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信