Droop control in grid-forming converters using a fractional-order PI controller: A power system transient analysis

IF 3.2 Q3 Mathematics
Luis L. Chiza , Diego Benítez , Rommel Aguilar , Oscar Camacho
{"title":"Droop control in grid-forming converters using a fractional-order PI controller: A power system transient analysis","authors":"Luis L. Chiza ,&nbsp;Diego Benítez ,&nbsp;Rommel Aguilar ,&nbsp;Oscar Camacho","doi":"10.1016/j.rico.2025.100517","DOIUrl":null,"url":null,"abstract":"<div><div>The integration of renewable energy sources in modern power grids introduces challenges in ensuring stable and efficient operation, especially during transient conditions and disturbances. One of the primary issues is the inadequate transient response of conventional droop control strategies in grid-forming (GFM) converters, which can impair system stability and performance under unbalanced load conditions. This article addresses these issues by introducing a fractional-order PI (FOPI) control strategy for droop control of GFM converters, aimed at improving the transient response and enhancing the overall stability of the system. The FOPI controller’s design allows for more flexible tuning of dynamic behaviors compared to traditional integer-order controllers, making it particularly effective for bolstering stability and fault tolerance. To optimize the parameters of the FOPI controller, continuous Monte Carlo simulation is used, focusing on performance under unbalanced load disturbances. The controller’s effectiveness is assessed using the Integral of Squared Error (ISE) and Integral of Squared Control Output (ISCO) metrics to balance accuracy and control effort. The simulation results under two fault scenarios demonstrate that the FOPI controllers significantly enhance the transient response and fault tolerance. In case 1, replacing the PI controllers with the FOPI controllers reduces error by 65% and improves energy efficiency by 16%. In case 2, FOPI controllers achieve an error reduction of 83% and an improvement in energy efficiency 15%. These findings highlight the effectiveness of FOPI controllers in improving control accuracy and efficiency in fault conditions.</div></div>","PeriodicalId":34733,"journal":{"name":"Results in Control and Optimization","volume":"18 ","pages":"Article 100517"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Control and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666720725000037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

The integration of renewable energy sources in modern power grids introduces challenges in ensuring stable and efficient operation, especially during transient conditions and disturbances. One of the primary issues is the inadequate transient response of conventional droop control strategies in grid-forming (GFM) converters, which can impair system stability and performance under unbalanced load conditions. This article addresses these issues by introducing a fractional-order PI (FOPI) control strategy for droop control of GFM converters, aimed at improving the transient response and enhancing the overall stability of the system. The FOPI controller’s design allows for more flexible tuning of dynamic behaviors compared to traditional integer-order controllers, making it particularly effective for bolstering stability and fault tolerance. To optimize the parameters of the FOPI controller, continuous Monte Carlo simulation is used, focusing on performance under unbalanced load disturbances. The controller’s effectiveness is assessed using the Integral of Squared Error (ISE) and Integral of Squared Control Output (ISCO) metrics to balance accuracy and control effort. The simulation results under two fault scenarios demonstrate that the FOPI controllers significantly enhance the transient response and fault tolerance. In case 1, replacing the PI controllers with the FOPI controllers reduces error by 65% and improves energy efficiency by 16%. In case 2, FOPI controllers achieve an error reduction of 83% and an improvement in energy efficiency 15%. These findings highlight the effectiveness of FOPI controllers in improving control accuracy and efficiency in fault conditions.
基于分数阶PI控制器的并网变流器的下垂控制:电力系统暂态分析
可再生能源在现代电网中的整合在确保稳定和高效运行方面提出了挑战,特别是在瞬态条件和干扰下。电网形成(GFM)变流器的主要问题之一是传统下垂控制策略的瞬态响应不足,这可能会影响系统在不平衡负载条件下的稳定性和性能。本文通过引入分数阶PI (FOPI)控制策略用于GFM变换器的下垂控制来解决这些问题,旨在改善系统的暂态响应并增强系统的整体稳定性。与传统的整阶控制器相比,FOPI控制器的设计允许更灵活地调整动态行为,使其在增强稳定性和容错性方面特别有效。为了优化FOPI控制器的参数,采用了连续蒙特卡罗仿真,重点研究了不平衡负载扰动下的性能。使用平方误差积分(ISE)和平方控制输出积分(ISCO)指标来评估控制器的有效性,以平衡精度和控制努力。两种故障情况下的仿真结果表明,FOPI控制器显著提高了系统的暂态响应和容错性。在情况1中,将PI控制器替换为FOPI控制器可减少65%的误差,提高16%的能效。在情况2中,FOPI控制器实现了83%的误差降低和15%的能效提高。这些发现突出了FOPI控制器在提高故障条件下的控制精度和效率方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Control and Optimization
Results in Control and Optimization Mathematics-Control and Optimization
CiteScore
3.00
自引率
0.00%
发文量
51
审稿时长
91 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信