{"title":"A global invariant for path structures and second order differential equations","authors":"E. Falbel , J.M. Veloso","doi":"10.1016/j.difgeo.2024.102224","DOIUrl":null,"url":null,"abstract":"<div><div>We study a global invariant for path structures which is obtained as a secondary invariant from a Cartan connection on a canonical bundle associated to a path structure. This invariant is computed in examples which are defined in terms of reductions of the path structure. In particular we give a formula for this global invariant for second order differential equations defined on a torus <span><math><msup><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>.</div></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"98 ","pages":"Article 102224"},"PeriodicalIF":0.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224524001177","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We study a global invariant for path structures which is obtained as a secondary invariant from a Cartan connection on a canonical bundle associated to a path structure. This invariant is computed in examples which are defined in terms of reductions of the path structure. In particular we give a formula for this global invariant for second order differential equations defined on a torus .
期刊介绍:
Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.