Pseudo-Kähler and hypersymplectic structures on semidirect products

IF 0.6 4区 数学 Q3 MATHEMATICS
Diego Conti , Alejandro Gil-García
{"title":"Pseudo-Kähler and hypersymplectic structures on semidirect products","authors":"Diego Conti ,&nbsp;Alejandro Gil-García","doi":"10.1016/j.difgeo.2024.102220","DOIUrl":null,"url":null,"abstract":"<div><div>We study left-invariant pseudo-Kähler and hypersymplectic structures on semidirect products <span><math><mi>G</mi><mo>⋊</mo><mi>H</mi></math></span>; we work at the level of the Lie algebra <span><math><mi>g</mi><mo>⋊</mo><mi>h</mi></math></span>. In particular we consider the structures induced on <span><math><mi>g</mi><mo>⋊</mo><mi>h</mi></math></span> by existing pseudo-Kähler structures on <span><math><mi>g</mi></math></span> and <span><math><mi>h</mi></math></span>; we classify all semidirect products of this type with <span><math><mi>g</mi></math></span> of dimension 4 and <span><math><mi>h</mi><mo>=</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>. In the hypersymplectic setting, we consider a more general construction on semidirect products. We construct a large class of hypersymplectic Lie algebras whose underlying complex structure is not abelian as well as non-flat hypersymplectic metrics on <em>k</em>-step nilpotent Lie algebras for every <span><math><mi>k</mi><mo>≥</mo><mn>3</mn></math></span>.</div></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"98 ","pages":"Article 102220"},"PeriodicalIF":0.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092622452400113X","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study left-invariant pseudo-Kähler and hypersymplectic structures on semidirect products GH; we work at the level of the Lie algebra gh. In particular we consider the structures induced on gh by existing pseudo-Kähler structures on g and h; we classify all semidirect products of this type with g of dimension 4 and h=R2. In the hypersymplectic setting, we consider a more general construction on semidirect products. We construct a large class of hypersymplectic Lie algebras whose underlying complex structure is not abelian as well as non-flat hypersymplectic metrics on k-step nilpotent Lie algebras for every k3.
Pseudo-Kähler和半直接产物上的超辛结构
研究了半直积G - H上的左不变pseudo-Kähler和超辛结构;我们在李代数的层面上研究。特别地,我们考虑由g和h上现有的pseudo-Kähler结构在g × h上诱导的结构;我们对g为4维且h=R2的所有这类半直积进行分类。在超辛环境下,我们考虑半直积的一种更一般的构造。在k阶幂零李代数上,对每k≥3构造了一类复结构为非阿贝尔的超辛李代数和非平坦的超辛度量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
20.00%
发文量
81
审稿时长
6-12 weeks
期刊介绍: Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信