Lower estimates for the length of the second fundamental form of submanifolds

IF 0.6 4区 数学 Q3 MATHEMATICS
Francisco G.S. Carvalho , Barnabé P. Lima , Paulo A. Sousa , Bruno V.M. Vieira
{"title":"Lower estimates for the length of the second fundamental form of submanifolds","authors":"Francisco G.S. Carvalho ,&nbsp;Barnabé P. Lima ,&nbsp;Paulo A. Sousa ,&nbsp;Bruno V.M. Vieira","doi":"10.1016/j.difgeo.2024.102216","DOIUrl":null,"url":null,"abstract":"<div><div>In a remarkable work <span><span>[35]</span></span>, Wei established estimates for the eigenvalues of the Laplacian on closed submanifolds <span><math><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> embedded in a unit sphere <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi><mo>+</mo><mi>m</mi></mrow></msup></math></span>. In this study, we extend these results to the eigenvalues of the <em>p</em>-Laplacian. As a consequence, we provide new characterizations of the sphere <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. Additionally, we derive integral inequalities in terms of the norm of the second fundamental form of <em>M</em> and the first non-zero eigenvalue of the <em>p</em>-Laplacian, thereby generalizing the results previously established by Santos and Soares <span><span>[11]</span></span> for hypersurfaces.</div></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"98 ","pages":"Article 102216"},"PeriodicalIF":0.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224524001098","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In a remarkable work [35], Wei established estimates for the eigenvalues of the Laplacian on closed submanifolds Mn embedded in a unit sphere Sn+m. In this study, we extend these results to the eigenvalues of the p-Laplacian. As a consequence, we provide new characterizations of the sphere Sn. Additionally, we derive integral inequalities in terms of the norm of the second fundamental form of M and the first non-zero eigenvalue of the p-Laplacian, thereby generalizing the results previously established by Santos and Soares [11] for hypersurfaces.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
20.00%
发文量
81
审稿时长
6-12 weeks
期刊介绍: Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信