{"title":"A Souplet–Zhang type gradient estimate for the fast diffusion equation associated with the Witten Laplacian","authors":"Homare Tadano","doi":"10.1016/j.difgeo.2024.102203","DOIUrl":null,"url":null,"abstract":"<div><div>We establish a Souplet–Zhang type local gradient estimate for positive solutions <span><math><mi>u</mi><mo>=</mo><mi>u</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></math></span> to the fast diffusion equation associated with the Witten Laplacian<span><span><span><math><mfrac><mrow><mo>∂</mo><mi>u</mi></mrow><mrow><mo>∂</mo><mi>t</mi></mrow></mfrac><mo>=</mo><msub><mrow><mi>Δ</mi></mrow><mrow><mi>V</mi></mrow></msub><msup><mrow><mi>u</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>,</mo><mspace></mspace><mn>1</mn><mo>−</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mi>N</mi></mrow></mfrac><mo><</mo><mi>m</mi><mo><</mo><mn>1</mn></math></span></span></span> on an <em>n</em>-dimensional Riemannian manifold <span><math><mo>(</mo><mi>X</mi><mo>,</mo><mi>g</mi><mo>)</mo></math></span> when the <em>N</em>-Bakry–Émery Ricci curvature with <span><math><mi>N</mi><mo>∈</mo><mo>[</mo><mi>n</mi><mo>,</mo><mo>+</mo><mo>∞</mo><mo>)</mo></math></span> is bounded from below by a non-positive constant. When the <em>N</em>-Bakry–Émery Ricci curvature is reduced to the Ricci curvature, our result refines the Souplet–Zhang type local gradient estimate by X. Zhu (2011) <span><span>[10]</span></span>. As an application, we prove a Liouville type theorem for positive ancient solutions to the fast diffusion equation associated with the Witten Laplacian on an <em>n</em>-dimensional non-compact Riemannian manifold <span><math><mo>(</mo><mi>X</mi><mo>,</mo><mi>g</mi><mo>)</mo></math></span> with non-negative <em>N</em>-Bakry–Émery Ricci curvature with <span><math><mi>N</mi><mo>∈</mo><mo>[</mo><mi>n</mi><mo>,</mo><mo>+</mo><mo>∞</mo><mo>)</mo></math></span>.</div></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"98 ","pages":"Article 102203"},"PeriodicalIF":0.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224524000962","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We establish a Souplet–Zhang type local gradient estimate for positive solutions to the fast diffusion equation associated with the Witten Laplacian on an n-dimensional Riemannian manifold when the N-Bakry–Émery Ricci curvature with is bounded from below by a non-positive constant. When the N-Bakry–Émery Ricci curvature is reduced to the Ricci curvature, our result refines the Souplet–Zhang type local gradient estimate by X. Zhu (2011) [10]. As an application, we prove a Liouville type theorem for positive ancient solutions to the fast diffusion equation associated with the Witten Laplacian on an n-dimensional non-compact Riemannian manifold with non-negative N-Bakry–Émery Ricci curvature with .
期刊介绍:
Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.