A Souplet–Zhang type gradient estimate for the fast diffusion equation associated with the Witten Laplacian

IF 0.6 4区 数学 Q3 MATHEMATICS
Homare Tadano
{"title":"A Souplet–Zhang type gradient estimate for the fast diffusion equation associated with the Witten Laplacian","authors":"Homare Tadano","doi":"10.1016/j.difgeo.2024.102203","DOIUrl":null,"url":null,"abstract":"<div><div>We establish a Souplet–Zhang type local gradient estimate for positive solutions <span><math><mi>u</mi><mo>=</mo><mi>u</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></math></span> to the fast diffusion equation associated with the Witten Laplacian<span><span><span><math><mfrac><mrow><mo>∂</mo><mi>u</mi></mrow><mrow><mo>∂</mo><mi>t</mi></mrow></mfrac><mo>=</mo><msub><mrow><mi>Δ</mi></mrow><mrow><mi>V</mi></mrow></msub><msup><mrow><mi>u</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>,</mo><mspace></mspace><mn>1</mn><mo>−</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mi>N</mi></mrow></mfrac><mo>&lt;</mo><mi>m</mi><mo>&lt;</mo><mn>1</mn></math></span></span></span> on an <em>n</em>-dimensional Riemannian manifold <span><math><mo>(</mo><mi>X</mi><mo>,</mo><mi>g</mi><mo>)</mo></math></span> when the <em>N</em>-Bakry–Émery Ricci curvature with <span><math><mi>N</mi><mo>∈</mo><mo>[</mo><mi>n</mi><mo>,</mo><mo>+</mo><mo>∞</mo><mo>)</mo></math></span> is bounded from below by a non-positive constant. When the <em>N</em>-Bakry–Émery Ricci curvature is reduced to the Ricci curvature, our result refines the Souplet–Zhang type local gradient estimate by X. Zhu (2011) <span><span>[10]</span></span>. As an application, we prove a Liouville type theorem for positive ancient solutions to the fast diffusion equation associated with the Witten Laplacian on an <em>n</em>-dimensional non-compact Riemannian manifold <span><math><mo>(</mo><mi>X</mi><mo>,</mo><mi>g</mi><mo>)</mo></math></span> with non-negative <em>N</em>-Bakry–Émery Ricci curvature with <span><math><mi>N</mi><mo>∈</mo><mo>[</mo><mi>n</mi><mo>,</mo><mo>+</mo><mo>∞</mo><mo>)</mo></math></span>.</div></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"98 ","pages":"Article 102203"},"PeriodicalIF":0.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224524000962","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We establish a Souplet–Zhang type local gradient estimate for positive solutions u=u(x,t) to the fast diffusion equation associated with the Witten Laplacianut=ΔVum,12N<m<1 on an n-dimensional Riemannian manifold (X,g) when the N-Bakry–Émery Ricci curvature with N[n,+) is bounded from below by a non-positive constant. When the N-Bakry–Émery Ricci curvature is reduced to the Ricci curvature, our result refines the Souplet–Zhang type local gradient estimate by X. Zhu (2011) [10]. As an application, we prove a Liouville type theorem for positive ancient solutions to the fast diffusion equation associated with the Witten Laplacian on an n-dimensional non-compact Riemannian manifold (X,g) with non-negative N-Bakry–Émery Ricci curvature with N[n,+).
与Witten Laplacian相关的快速扩散方程的Souplet-Zhang型梯度估计
在N维黎曼流形(x, g)上,当N∈[N,+∞]的N- bakry -Émery Ricci曲率下界为一个非正常数时,对于与Witten Laplacian∂u∂t=ΔVum,1−2N<m<;1相关的快速扩散方程,我们建立了一个Souplet-Zhang型局部梯度估计u=u(x,t)的正解。当N-Bakry -Émery Ricci曲率简化为Ricci曲率时,我们的结果改进了X. Zhu(2011)[10]的Souplet-Zhang型局部梯度估计。作为应用,我们在N∈[N,+∞]具有非负N- bakry -Émery Ricci曲率的N维非紧黎曼流形(X,g)上证明了与Witten Laplacian相关的快速扩散方程正古解的Liouville型定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
20.00%
发文量
81
审稿时长
6-12 weeks
期刊介绍: Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信