Magdalena Pabisz , Judit Muñoz-Matute , Maciej Paszyński
{"title":"Augmenting MRI scan data with real-time predictions of glioblastoma brain tumor evolution using faster exponential time integrators","authors":"Magdalena Pabisz , Judit Muñoz-Matute , Maciej Paszyński","doi":"10.1016/j.jocs.2024.102493","DOIUrl":null,"url":null,"abstract":"<div><div>We present a MATLAB code for exponential integrators method simulating the glioblastoma tumor growth. It employs the Fisher–Kolmogorov diffusion–reaction tumor brain model with logistic growth. The input is the MRI scans of the human head and the initial tumor location. The simulation uses the finite difference formulation in space and the ultra-fast exponential integrators method in time. The output from the code is the input data for ParaView visualization. While there are many brain tumor simulation codes, our method’s novelty lies in its implementation using exponential integrators. We propose a new algorithm for the fast computation of exponential integrators. Regarding execution time on a laptop with Win10, using MATLAB, with 11th Gen Intel(R) Core(TM) i5-11500H, 2.92 GHz, and 32 GB of RAM, the algorithm outperforms the state-of-the-art routines from Al-Mohy and Higham (2011). We also compare our method with an implicit, unconditionally stable Crank–Nicolson time integration scheme based on the finite difference method. We show that our method is two orders of magnitude faster than the Crank–Nicolson method with finite difference discretization in space on a laptop equipped with MATLAB. The brain tumor two-year future prediction using <span><math><mrow><mn>132</mn><mo>×</mo><mn>132</mn><mo>×</mo><mn>132</mn></mrow></math></span> computational grid and 100-time steps, built over the MRI scans of the human head, takes less than 15 minutes on the laptop.</div></div>","PeriodicalId":48907,"journal":{"name":"Journal of Computational Science","volume":"85 ","pages":"Article 102493"},"PeriodicalIF":3.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877750324002862","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
We present a MATLAB code for exponential integrators method simulating the glioblastoma tumor growth. It employs the Fisher–Kolmogorov diffusion–reaction tumor brain model with logistic growth. The input is the MRI scans of the human head and the initial tumor location. The simulation uses the finite difference formulation in space and the ultra-fast exponential integrators method in time. The output from the code is the input data for ParaView visualization. While there are many brain tumor simulation codes, our method’s novelty lies in its implementation using exponential integrators. We propose a new algorithm for the fast computation of exponential integrators. Regarding execution time on a laptop with Win10, using MATLAB, with 11th Gen Intel(R) Core(TM) i5-11500H, 2.92 GHz, and 32 GB of RAM, the algorithm outperforms the state-of-the-art routines from Al-Mohy and Higham (2011). We also compare our method with an implicit, unconditionally stable Crank–Nicolson time integration scheme based on the finite difference method. We show that our method is two orders of magnitude faster than the Crank–Nicolson method with finite difference discretization in space on a laptop equipped with MATLAB. The brain tumor two-year future prediction using computational grid and 100-time steps, built over the MRI scans of the human head, takes less than 15 minutes on the laptop.
期刊介绍:
Computational Science is a rapidly growing multi- and interdisciplinary field that uses advanced computing and data analysis to understand and solve complex problems. It has reached a level of predictive capability that now firmly complements the traditional pillars of experimentation and theory.
The recent advances in experimental techniques such as detectors, on-line sensor networks and high-resolution imaging techniques, have opened up new windows into physical and biological processes at many levels of detail. The resulting data explosion allows for detailed data driven modeling and simulation.
This new discipline in science combines computational thinking, modern computational methods, devices and collateral technologies to address problems far beyond the scope of traditional numerical methods.
Computational science typically unifies three distinct elements:
• Modeling, Algorithms and Simulations (e.g. numerical and non-numerical, discrete and continuous);
• Software developed to solve science (e.g., biological, physical, and social), engineering, medicine, and humanities problems;
• Computer and information science that develops and optimizes the advanced system hardware, software, networking, and data management components (e.g. problem solving environments).