Multi-objective optimization in the design of load sharing systems with mixed redundancy strategies under random shocks

IF 3.1 3区 计算机科学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Mohammad Yaghtin, Youness Javid, Mostafa Abouei Ardakan
{"title":"Multi-objective optimization in the design of load sharing systems with mixed redundancy strategies under random shocks","authors":"Mohammad Yaghtin,&nbsp;Youness Javid,&nbsp;Mostafa Abouei Ardakan","doi":"10.1016/j.jocs.2024.102495","DOIUrl":null,"url":null,"abstract":"<div><div>The redundancy allocation problem (RAP) focuses on assigning one or more components in parallel to enhance the overall reliability of a system. Selecting a redundancy type (active or standby) for each component is a critical challenge in system design. Active components can share the load among themselves (unlike standby components), and standby components are not subjected to shock attacks (unlike active components). This research presents a multi-objective optimization model to enhance system reliability and minimize costs. The proposed model is designed for a load-sharing system with a series-parallel structure, subject to shock attacks. Reliability (availability) is calculated using a stochastic approach based on the Markov chain, and the NSGA-II algorithm solves the multi-objective optimization problem. Two numerical examples investigate the proposed approach, identifying appropriate solutions through Pareto frontiers and analyzing the impact of load-sharing and shock attacks on optimization results.</div></div>","PeriodicalId":48907,"journal":{"name":"Journal of Computational Science","volume":"85 ","pages":"Article 102495"},"PeriodicalIF":3.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877750324002886","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The redundancy allocation problem (RAP) focuses on assigning one or more components in parallel to enhance the overall reliability of a system. Selecting a redundancy type (active or standby) for each component is a critical challenge in system design. Active components can share the load among themselves (unlike standby components), and standby components are not subjected to shock attacks (unlike active components). This research presents a multi-objective optimization model to enhance system reliability and minimize costs. The proposed model is designed for a load-sharing system with a series-parallel structure, subject to shock attacks. Reliability (availability) is calculated using a stochastic approach based on the Markov chain, and the NSGA-II algorithm solves the multi-objective optimization problem. Two numerical examples investigate the proposed approach, identifying appropriate solutions through Pareto frontiers and analyzing the impact of load-sharing and shock attacks on optimization results.
冗余分配问题(RAP)侧重于并行分配一个或多个组件,以增强系统的整体可靠性。为每个组件选择冗余类型(活动或备用)是系统设计中的一个关键挑战。主用组件之间可以分担负载(与备用组件不同),备用组件不受冲击(与主用组件不同)。提出了一种以提高系统可靠性和降低成本为目标的多目标优化模型。所提出的模型是针对具有串并联结构的负载共享系统进行设计的。采用基于马尔可夫链的随机方法计算可靠性(可用性),采用NSGA-II算法解决多目标优化问题。两个数值算例验证了所提出的方法,通过Pareto边界确定了合适的解,并分析了负载分担和冲击攻击对优化结果的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Computational Science
Journal of Computational Science COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
5.50
自引率
3.00%
发文量
227
审稿时长
41 days
期刊介绍: Computational Science is a rapidly growing multi- and interdisciplinary field that uses advanced computing and data analysis to understand and solve complex problems. It has reached a level of predictive capability that now firmly complements the traditional pillars of experimentation and theory. The recent advances in experimental techniques such as detectors, on-line sensor networks and high-resolution imaging techniques, have opened up new windows into physical and biological processes at many levels of detail. The resulting data explosion allows for detailed data driven modeling and simulation. This new discipline in science combines computational thinking, modern computational methods, devices and collateral technologies to address problems far beyond the scope of traditional numerical methods. Computational science typically unifies three distinct elements: • Modeling, Algorithms and Simulations (e.g. numerical and non-numerical, discrete and continuous); • Software developed to solve science (e.g., biological, physical, and social), engineering, medicine, and humanities problems; • Computer and information science that develops and optimizes the advanced system hardware, software, networking, and data management components (e.g. problem solving environments).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信