Antonio Jesús Chaves, Cristian Martín, Luis Llopis Torres, Manuel Díaz, Jaime Fernández-Ortega, Juan Antonio Barberá, Bartolomé Andreo
{"title":"A soft sensor open-source methodology for inexpensive monitoring of water quality: A case study of NO3− concentrations","authors":"Antonio Jesús Chaves, Cristian Martín, Luis Llopis Torres, Manuel Díaz, Jaime Fernández-Ortega, Juan Antonio Barberá, Bartolomé Andreo","doi":"10.1016/j.jocs.2024.102522","DOIUrl":null,"url":null,"abstract":"<div><div>Nitrate (NO<sub>3</sub><sup>−</sup>) concentrations in aquifers constitute a global problem affecting environmental integrity and public health. Unfortunately, deploying hardware sensors specifically for NO<sub>3</sub><sup>−</sup> measurements can be expensive, thereby, limiting scalability. This research explores the integration of soft sensors with data streams through an use case to predict nitrate NO<sub>3</sub><sup>−</sup> levels in real time. To achieve this objective, a methodology based on Kafka-ML is proposed, a framework designed to manage the pipeline of machine learning models using data streams. The study evaluates the effectiveness of this methodology by applying it to a real-world scenario, including the integration of low-cost sensor devices. Additionally, Kafka-ML is extended by integrating MQTT and other IoT data protocols. The methodology benefits include rapid development, enhanced control, and visualisation of soft sensors. By seamlessly integrating IoT and data analytics, the approach promotes the adoption of cost-effective solutions for managing NO<sub>3</sub><sup>−</sup> pollution and improving sustainable water resource monitoring.</div></div>","PeriodicalId":48907,"journal":{"name":"Journal of Computational Science","volume":"85 ","pages":"Article 102522"},"PeriodicalIF":3.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877750324003156","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Nitrate (NO3−) concentrations in aquifers constitute a global problem affecting environmental integrity and public health. Unfortunately, deploying hardware sensors specifically for NO3− measurements can be expensive, thereby, limiting scalability. This research explores the integration of soft sensors with data streams through an use case to predict nitrate NO3− levels in real time. To achieve this objective, a methodology based on Kafka-ML is proposed, a framework designed to manage the pipeline of machine learning models using data streams. The study evaluates the effectiveness of this methodology by applying it to a real-world scenario, including the integration of low-cost sensor devices. Additionally, Kafka-ML is extended by integrating MQTT and other IoT data protocols. The methodology benefits include rapid development, enhanced control, and visualisation of soft sensors. By seamlessly integrating IoT and data analytics, the approach promotes the adoption of cost-effective solutions for managing NO3− pollution and improving sustainable water resource monitoring.
期刊介绍:
Computational Science is a rapidly growing multi- and interdisciplinary field that uses advanced computing and data analysis to understand and solve complex problems. It has reached a level of predictive capability that now firmly complements the traditional pillars of experimentation and theory.
The recent advances in experimental techniques such as detectors, on-line sensor networks and high-resolution imaging techniques, have opened up new windows into physical and biological processes at many levels of detail. The resulting data explosion allows for detailed data driven modeling and simulation.
This new discipline in science combines computational thinking, modern computational methods, devices and collateral technologies to address problems far beyond the scope of traditional numerical methods.
Computational science typically unifies three distinct elements:
• Modeling, Algorithms and Simulations (e.g. numerical and non-numerical, discrete and continuous);
• Software developed to solve science (e.g., biological, physical, and social), engineering, medicine, and humanities problems;
• Computer and information science that develops and optimizes the advanced system hardware, software, networking, and data management components (e.g. problem solving environments).