{"title":"Stability and dynamic response of centrifugal pendulum vibration absorber based on nonlinear hybrid damping","authors":"Yizhe Zhang , Yi Zhang , Massimiliano Gobbi , Guangqiang Wu","doi":"10.1016/j.jsv.2024.118869","DOIUrl":null,"url":null,"abstract":"<div><div>Centrifugal pendulum vibration absorber (CPVA) have emerged as an extremely effective method to mitigate torsional vibrations in rotating machinery. Previous studies have predominantly focused on viscous damping between pendulums and rotor, largely ignoring other damping mechanisms. However, recent experimental endeavors have revealed a hybrid damping concept that combines rolling and viscous damping, providing a more realistic portrayal of CPVA dynamics in vehicular applications. This study builds on prior investigations by incorporating nonlinear hybrid damping of the pendulums and investigating the steady-state and transient behavior of the CPVA within gravitational and centrifugal force fields. We propose a methodology for deriving pendulum equations of motion based on perturbation and multiple scales. Subsequently, we investigated the CPVA’s critical stability and bifurcation as well as a variety of nonlinear phenomena, using numerical simulations to validate our results. Furthermore, our study revealed a novel phenomenon known as the ‘phase jump’ for the pendulum. It is worth noting that the CPVA’s dynamic performance can be improved and the local nonlinear response can be reduced by adjusting the share and magnitude of the rolling and viscous damping coefficients. This study provides insights for optimizing the CPVA’s performance and advancing its efficacy.</div></div>","PeriodicalId":17233,"journal":{"name":"Journal of Sound and Vibration","volume":"600 ","pages":"Article 118869"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sound and Vibration","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022460X2400631X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Centrifugal pendulum vibration absorber (CPVA) have emerged as an extremely effective method to mitigate torsional vibrations in rotating machinery. Previous studies have predominantly focused on viscous damping between pendulums and rotor, largely ignoring other damping mechanisms. However, recent experimental endeavors have revealed a hybrid damping concept that combines rolling and viscous damping, providing a more realistic portrayal of CPVA dynamics in vehicular applications. This study builds on prior investigations by incorporating nonlinear hybrid damping of the pendulums and investigating the steady-state and transient behavior of the CPVA within gravitational and centrifugal force fields. We propose a methodology for deriving pendulum equations of motion based on perturbation and multiple scales. Subsequently, we investigated the CPVA’s critical stability and bifurcation as well as a variety of nonlinear phenomena, using numerical simulations to validate our results. Furthermore, our study revealed a novel phenomenon known as the ‘phase jump’ for the pendulum. It is worth noting that the CPVA’s dynamic performance can be improved and the local nonlinear response can be reduced by adjusting the share and magnitude of the rolling and viscous damping coefficients. This study provides insights for optimizing the CPVA’s performance and advancing its efficacy.
期刊介绍:
The Journal of Sound and Vibration (JSV) is an independent journal devoted to the prompt publication of original papers, both theoretical and experimental, that provide new information on any aspect of sound or vibration. There is an emphasis on fundamental work that has potential for practical application.
JSV was founded and operates on the premise that the subject of sound and vibration requires a journal that publishes papers of a high technical standard across the various subdisciplines, thus facilitating awareness of techniques and discoveries in one area that may be applicable in others.