Zhenwei Xu , Roshan S. Kaundinya , Shobhit Jain , George Haller
{"title":"Nonlinear model reduction to random spectral submanifolds in random vibrations","authors":"Zhenwei Xu , Roshan S. Kaundinya , Shobhit Jain , George Haller","doi":"10.1016/j.jsv.2024.118923","DOIUrl":null,"url":null,"abstract":"<div><div>Dynamical systems in engineering and physics are often subject to irregular excitations that are best modeled as random. Monte Carlo simulations are routinely performed on such random models to obtain statistics on their long-term response. Such simulations, however, are prohibitively expensive and time consuming for high-dimensional nonlinear systems. Here we propose to decrease this numerical burden significantly by reducing the full system to very low-dimensional, attracting, random invariant manifolds in its phase space and performing the Monte Carlo simulations on that reduced dynamical system. The random spectral submanifolds (SSMs) we construct for this purpose generalize the concept of SSMs from deterministic systems under uniformly bounded random forcing. We illustrate the accuracy and speed of random SSM reduction by computing the SSM-reduced power spectral density of the randomly forced mechanical systems that range from simple oscillator chains to finite-element models of beams and plates.</div></div>","PeriodicalId":17233,"journal":{"name":"Journal of Sound and Vibration","volume":"600 ","pages":"Article 118923"},"PeriodicalIF":4.3000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sound and Vibration","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022460X24006862","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Dynamical systems in engineering and physics are often subject to irregular excitations that are best modeled as random. Monte Carlo simulations are routinely performed on such random models to obtain statistics on their long-term response. Such simulations, however, are prohibitively expensive and time consuming for high-dimensional nonlinear systems. Here we propose to decrease this numerical burden significantly by reducing the full system to very low-dimensional, attracting, random invariant manifolds in its phase space and performing the Monte Carlo simulations on that reduced dynamical system. The random spectral submanifolds (SSMs) we construct for this purpose generalize the concept of SSMs from deterministic systems under uniformly bounded random forcing. We illustrate the accuracy and speed of random SSM reduction by computing the SSM-reduced power spectral density of the randomly forced mechanical systems that range from simple oscillator chains to finite-element models of beams and plates.
期刊介绍:
The Journal of Sound and Vibration (JSV) is an independent journal devoted to the prompt publication of original papers, both theoretical and experimental, that provide new information on any aspect of sound or vibration. There is an emphasis on fundamental work that has potential for practical application.
JSV was founded and operates on the premise that the subject of sound and vibration requires a journal that publishes papers of a high technical standard across the various subdisciplines, thus facilitating awareness of techniques and discoveries in one area that may be applicable in others.