Time-mixing and feature-mixing modelling for realized volatility forecast: Evidence from TSMixer model

Q1 Mathematics
Hugo Gobato Souto , Storm Koert Heuvel , Francisco Louzada Neto
{"title":"Time-mixing and feature-mixing modelling for realized volatility forecast: Evidence from TSMixer model","authors":"Hugo Gobato Souto ,&nbsp;Storm Koert Heuvel ,&nbsp;Francisco Louzada Neto","doi":"10.1016/j.jfds.2024.100143","DOIUrl":null,"url":null,"abstract":"<div><div>This study evaluates the effectiveness of the TSMixer neural network model in forecasting stock realized volatility, comparing it with traditional and contemporary benchmark models. Using data from S&amp;P 100 index stocks and three other datasets containing various financial securities, extensive analyses, including robustness tests, were conducted. Results show that TSMixer outperforms benchmark models in predicting individual stock volatility when applied to datasets with a large number of securities, leveraging its feature-mixing MLP techniques, which can properly model the financial tail dependence phenomenon. However, its superiority diminishes in datasets with fewer securities, such as stock indexes, foreign exchange rates, and commodities, where models like NBEATSx and NHITS often perform better. This indicates that TSMixer's performance is context-dependent, excelling when feature interdependencies can be fully exploited. The findings suggest that simplified neural network architectures like TSMixer can enhance forecasting accuracy in appropriate contexts but may have limitations in datasets with fewer securities.</div></div>","PeriodicalId":36340,"journal":{"name":"Journal of Finance and Data Science","volume":"10 ","pages":"Article 100143"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Finance and Data Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S240591882400028X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

This study evaluates the effectiveness of the TSMixer neural network model in forecasting stock realized volatility, comparing it with traditional and contemporary benchmark models. Using data from S&P 100 index stocks and three other datasets containing various financial securities, extensive analyses, including robustness tests, were conducted. Results show that TSMixer outperforms benchmark models in predicting individual stock volatility when applied to datasets with a large number of securities, leveraging its feature-mixing MLP techniques, which can properly model the financial tail dependence phenomenon. However, its superiority diminishes in datasets with fewer securities, such as stock indexes, foreign exchange rates, and commodities, where models like NBEATSx and NHITS often perform better. This indicates that TSMixer's performance is context-dependent, excelling when feature interdependencies can be fully exploited. The findings suggest that simplified neural network architectures like TSMixer can enhance forecasting accuracy in appropriate contexts but may have limitations in datasets with fewer securities.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Finance and Data Science
Journal of Finance and Data Science Mathematics-Statistics and Probability
CiteScore
3.90
自引率
0.00%
发文量
15
审稿时长
30 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信