Resistive switching mechanisms in BiFeO3 devices with YBCO and Ag as top electrodes

Q2 Physics and Astronomy
Santiago Ceballos Medina , Lorena Marín Mercado , Alexander Cardona-Rodríguez , Mario Fernando Quiñonez Penagos , César Magén , Luis Alfredo Rodríguez , Juan Gabriel Ramírez
{"title":"Resistive switching mechanisms in BiFeO3 devices with YBCO and Ag as top electrodes","authors":"Santiago Ceballos Medina ,&nbsp;Lorena Marín Mercado ,&nbsp;Alexander Cardona-Rodríguez ,&nbsp;Mario Fernando Quiñonez Penagos ,&nbsp;César Magén ,&nbsp;Luis Alfredo Rodríguez ,&nbsp;Juan Gabriel Ramírez","doi":"10.1016/j.physo.2024.100249","DOIUrl":null,"url":null,"abstract":"<div><div>The resistive switching (RS) effect in ferroelectric oxides continues to attract significant attention due to its potential applications in nonvolatile memory and neuromorphic computing devices. In this study, we investigate the RS properties of BiFeO<sub>3</sub>/YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7−d</sub> (BFO/YBCO) bilayers grown on LSAT substrates, comparing two different top-electrode materials: YBCO and Ag. The devices were fabricated using reactive sputtering at high oxygen pressure, and their RS mechanisms were investigated via current-voltage (I-V) measurements. We find all devices exhibit unipolar behavior, with symmetric RS behavior observed in devices with YBCO top electrodes and asymmetric RS in those with Ag top electrodes. Devices with YBCO top electrodes display ohmic conduction, whereas Ag top electrode devices exhibit a combination of Schottky, Poole-Frenkel emission, and spaced charge limited conduction mechanisms. Resistance versus time measurements were performed over 30 cycles with 20 different writing voltages to evaluate the ratio between the low resistance state (LRS) and high resistance state (HRS). Ag top electrodes devices consistently exhibited higher resistance ratios ‒approximately three times larger‒ compared to YBCO devices. Furthermore, better temporal stability of HRS and LRS was observed in devices with Ag top electrodes, attributed to the differences in the Fermi energy levels between YBCO, Ag and BFO. The superior performance of Ag top electrode devices, including their higher storage density and low operation parameters (0.25 V and 5 nA), highlights their potential for energy-efficient applications in future oxide-based memory and neuromorphic devices.</div></div>","PeriodicalId":36067,"journal":{"name":"Physics Open","volume":"22 ","pages":"Article 100249"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666032624000474","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

The resistive switching (RS) effect in ferroelectric oxides continues to attract significant attention due to its potential applications in nonvolatile memory and neuromorphic computing devices. In this study, we investigate the RS properties of BiFeO3/YBa2Cu3O7−d (BFO/YBCO) bilayers grown on LSAT substrates, comparing two different top-electrode materials: YBCO and Ag. The devices were fabricated using reactive sputtering at high oxygen pressure, and their RS mechanisms were investigated via current-voltage (I-V) measurements. We find all devices exhibit unipolar behavior, with symmetric RS behavior observed in devices with YBCO top electrodes and asymmetric RS in those with Ag top electrodes. Devices with YBCO top electrodes display ohmic conduction, whereas Ag top electrode devices exhibit a combination of Schottky, Poole-Frenkel emission, and spaced charge limited conduction mechanisms. Resistance versus time measurements were performed over 30 cycles with 20 different writing voltages to evaluate the ratio between the low resistance state (LRS) and high resistance state (HRS). Ag top electrodes devices consistently exhibited higher resistance ratios ‒approximately three times larger‒ compared to YBCO devices. Furthermore, better temporal stability of HRS and LRS was observed in devices with Ag top electrodes, attributed to the differences in the Fermi energy levels between YBCO, Ag and BFO. The superior performance of Ag top electrode devices, including their higher storage density and low operation parameters (0.25 V and 5 nA), highlights their potential for energy-efficient applications in future oxide-based memory and neuromorphic devices.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physics Open
Physics Open Physics and Astronomy-Physics and Astronomy (all)
CiteScore
3.20
自引率
0.00%
发文量
19
审稿时长
9 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信