Effect of annealing on the structural, morphological, optical, magnetic, and dielectric properties of nickel-doped cobalt nanoferrites for electronic applications

Q2 Physics and Astronomy
Md Shihabun Sakib , Md Naimur Rahman , Md Alamgir Hossain , Md Rashedur Rahman
{"title":"Effect of annealing on the structural, morphological, optical, magnetic, and dielectric properties of nickel-doped cobalt nanoferrites for electronic applications","authors":"Md Shihabun Sakib ,&nbsp;Md Naimur Rahman ,&nbsp;Md Alamgir Hossain ,&nbsp;Md Rashedur Rahman","doi":"10.1016/j.physo.2024.100250","DOIUrl":null,"url":null,"abstract":"<div><div>Nanocrystalline powders of nickel-substituted cobalt ferrite were synthesized using the chemical co-precipitation method with ammonia solution as the precipitating agent, maintaining a nickel-to-iron mole ratio of 1:3. The effects of annealing at 600 °C, 650 °C, 700 °C, and 750 °C on the structural, morphological, optical, magnetic, and dielectric properties of the samples were evaluated using X-ray diffraction (XRD), scanning electron microscopy (SEM), a UV–vis–NIR spectrophotometer (UV), a vibrating sample magnetometer (VSM), and an impedance analyzer. X-ray diffraction analysis confirmed the f.c.c spinel structure with an Fd<em>3</em>m symmetric space group, and crystallite sizes increased from 15.96 to 19.11 nm with higher annealing temperatures. SEM revealed nanoparticle sizes of 362.14–444.88 nm, each comprising 22–23 crystals. UV spectroscopy indicated semiconductor behavior with band gaps ranging from 1.86 to 2.15 eV. Dielectric constant and losses decreased with higher annealing temperature and frequency. Annealing affected interionic bond lengths, distances, and angles, resulting in an increase in coercivity from 77.15 to 117.70 Oe, while saturation magnetization decreased from 9.15 to 5.32 emu/g, indicating the soft magnetic properties of CNSF nanoparticles. The Curie temperature dropped from 551.29 °C to 379.55 °C as temperature increased. The experimental results align with reported values, showing that higher annealing temperatures provide optimal structural, morphological, and magnetic properties, while lower temperatures favor optical and dielectric properties in CNSF nanoparticles.</div></div>","PeriodicalId":36067,"journal":{"name":"Physics Open","volume":"22 ","pages":"Article 100250"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666032624000486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

Nanocrystalline powders of nickel-substituted cobalt ferrite were synthesized using the chemical co-precipitation method with ammonia solution as the precipitating agent, maintaining a nickel-to-iron mole ratio of 1:3. The effects of annealing at 600 °C, 650 °C, 700 °C, and 750 °C on the structural, morphological, optical, magnetic, and dielectric properties of the samples were evaluated using X-ray diffraction (XRD), scanning electron microscopy (SEM), a UV–vis–NIR spectrophotometer (UV), a vibrating sample magnetometer (VSM), and an impedance analyzer. X-ray diffraction analysis confirmed the f.c.c spinel structure with an Fd3m symmetric space group, and crystallite sizes increased from 15.96 to 19.11 nm with higher annealing temperatures. SEM revealed nanoparticle sizes of 362.14–444.88 nm, each comprising 22–23 crystals. UV spectroscopy indicated semiconductor behavior with band gaps ranging from 1.86 to 2.15 eV. Dielectric constant and losses decreased with higher annealing temperature and frequency. Annealing affected interionic bond lengths, distances, and angles, resulting in an increase in coercivity from 77.15 to 117.70 Oe, while saturation magnetization decreased from 9.15 to 5.32 emu/g, indicating the soft magnetic properties of CNSF nanoparticles. The Curie temperature dropped from 551.29 °C to 379.55 °C as temperature increased. The experimental results align with reported values, showing that higher annealing temperatures provide optimal structural, morphological, and magnetic properties, while lower temperatures favor optical and dielectric properties in CNSF nanoparticles.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physics Open
Physics Open Physics and Astronomy-Physics and Astronomy (all)
CiteScore
3.20
自引率
0.00%
发文量
19
审稿时长
9 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信